OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 23 — Aug. 10, 1999
  • pp: 4997–5003

Reconstruction of surfaces from phase-shifting speckle interferometry: Bayesian approach

Elke Berger, Wolfgang von der Linden, Volker Dose, Martin Jakobi, and Alexander W. Koch  »View Author Affiliations


Applied Optics, Vol. 38, Issue 23, pp. 4997-5003 (1999)
http://dx.doi.org/10.1364/AO.38.004997


View Full Text Article

Enhanced HTML    Acrobat PDF (2412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reconstruction of surfaces from speckle interferometry data is a demanding data-analysis task that involves edge detection, edge completion, and image reconstruction from noisy data. We present an approach that makes optimal use of the experimental information to minimize the hampering influence of the noise. The experimental data are then analyzed with a combination of wavelet transform and Bayesian probability theory. Nontrivial examples are presented to illustrate the proposed technique.

© 1999 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(100.7410) Image processing : Wavelets
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

History
Original Manuscript: December 14, 1998
Revised Manuscript: April 13, 1999
Published: August 10, 1999

Citation
Elke Berger, Wolfgang von der Linden, Volker Dose, Martin Jakobi, and Alexander W. Koch, "Reconstruction of surfaces from phase-shifting speckle interferometry: Bayesian approach," Appl. Opt. 38, 4997-5003 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-23-4997


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Osten, Digitale Verarbeitung und Auswertung von Interferenzbildern (Akademie Verlag, Berlin, 1991).
  2. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), p. 194.
  3. K. A. Stetson, J. Wahid, P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830–4838 (1997). [CrossRef] [PubMed]
  4. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1989).
  5. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, UK, 1989). [CrossRef]
  6. A. W. Koch, M. Ruprecht, O. Toedter, G. Häusler, Optische Messtechnik an Technischen Oberflächen (Expert Verlag, Renningen, Germany, 1998).
  7. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), p. 94.
  8. E. Berger, W. von der Linden, V. Dose, M. Ruprecht, A. W. Koch, “Approach for the evaluation of speckle deformation measurements by application of the wavelet transformation,” Appl. Opt. 36, 7455–7460 (1997). [CrossRef]
  9. M. Zeller, “Flinkes Wellenspiel,” C’T 11, 258–264 (1994).
  10. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992). [CrossRef]
  11. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, Mass., 1994).
  12. J. Froment, S. Mallat, “Second generation compact image coding with wavelets,” in Wavelets—A Tutorial in Theory and Applications, C. K. Chui, ed. (Academic, New York, 1992), p. 655.
  13. R. D. Rosenkrantz, ed., E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics (Reidel, Dordrecht, The Netherlands, 1983).
  14. E. T. Jaynes, “Prior probabilities,” in E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics, R. Rosenkrantz, ed. (Reidel, Dordrecht, The Netherlands, 1983), p. 114.
  15. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  16. J. Meinguet, “Multivariate interpolation at arbitrary points made simple,” ZAMP 30, 292–304 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited