OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 23 — Aug. 10, 1999
  • pp: 5004–5013

Encoding Amplitude Information onto Phase-Only Filters

Jeffrey A. Davis, Don M. Cottrell, Juan Campos, María J. Yzuel, and Ignacio Moreno  »View Author Affiliations


Applied Optics, Vol. 38, Issue 23, pp. 5004-5013 (1999)
http://dx.doi.org/10.1364/AO.38.005004


View Full Text Article

Acrobat PDF (465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new, to our knowledge, technique for encoding amplitude information onto a phase-only filter with a single liquid-crystal spatial light modulator. In our approach we spatially modulate the phase that is encoded onto the filter and, consequently, spatially modify the diffraction efficiency of the filter. Light that is not diffracted into the first order is sent into the zero order, effectively allowing for amplitude modulation of either the first-order or the zero-order diffracted light. This technique has several applications in both optical pattern recognition and image processing, including amplitude modulation and inverse filters. Experimental results are included for the new technique.

© 1999 Optical Society of America

OCIS Codes
(100.4550) Image processing : Correlators
(100.5010) Image processing : Pattern recognition
(100.5090) Image processing : Phase-only filters
(160.3710) Materials : Liquid crystals
(230.6120) Optical devices : Spatial light modulators

Citation
Jeffrey A. Davis, Don M. Cottrell, Juan Campos, María J. Yzuel, and Ignacio Moreno, "Encoding Amplitude Information onto Phase-Only Filters," Appl. Opt. 38, 5004-5013 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-23-5004


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
  2. H. K. Liu, J. A. Davis, and R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
  3. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986).
  4. F. T. S. Yu, S. Jutamulia, and X. L. Huang, “Experimental application of low-cost liquid crystal TV to white-light optical signal processing,” Appl. Opt. 25, 3324–3326 (1986).
  5. J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533–L1535 (1990).
  6. N. Clark, C. M. Crancall, and M. K. Giles, “Using liquid crystal TV’s in VanderLugt optical correlators,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE 1564, 439–451 (1991).
  7. C. Soutar, S. Monroe, and J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
  8. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
  9. L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt. 34, 1944–1950 (1995).
  10. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35, 4567–4576 (1996).
  11. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993).
  12. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
  13. I. Moreno and J. A. Davis, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal light modulators,” Opt. Eng. 37, 3048–3052 (1998).
  14. R. D. Juday, “Optimal realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993).
  15. S. E. Monroe, Jr., C. Soutar, and R. D. Juday, “Laboratory implementation of optimal filter algorithms for coupled spatial light modulators,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE 1959, 278–283 (1993).
  16. G. G. Mu, X. M. Wang, and Z. Q. Wang, “Amplitude-compensated matched filtering,” Appl. Opt. 27, 3461–3463 (1988).
  17. D. L. Flannery, J. S. Loomis, and M. E. Milkovich, “Transform-ratio ternary phase-amplitude filter formulation for improved correlation discrimination,” Appl. Opt. 27, 4079–4083 (1988).
  18. I. Moreno, E. Ahouzi, J. Campos, and M. J. Yzuel, “Real-time binary-amplitude phase-only filters,” Appl. Opt. 36, 7428–7432 (1997).
  19. R. W. Cohn and M. Liang, “Approximating fully complex spatial modulation with pseudo-random phase-only modulation,” Appl. Opt. 33, 4406–4415 (1994).
  20. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am. 61, 1023–1028 (1971).
  21. D. C. Chu and J. W. Goodman, “Spectrum shaping with parity sequences,” Appl. Opt. 11, 1716–1724 (1972).
  22. C. K. Hsush and A. A. Sawchuk, “Computer-generated double phase holograms,” Appl. Opt. 17, 3874–3884 (1978).
  23. J. N. Mait and K. H. Brenner, “Dual-phase holograms: improved design,” Appl. Opt. 26, 4883–4892 (1987).
  24. J. N. Mait and G. S. Himes, “Computer generated holograms by means of a magnetooptic spatial light modulator,” Appl. Opt. 28, 4879–4887 (1989).
  25. O. Bryngdahl and F. Wyrowski, “Digital holography: computer-generated holograms,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1990), Vol. XXVIII.
  26. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481–1571 (1991).
  27. E. Noponen and J. Turunen, “Complex-amplitude modulation by high-carrier-frequency diffractive elements,” J. Opt. Soc. Am. A 13, 1422–1428 (1996).
  28. E. Noponen and J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1097–1109 (1994).
  29. J. Turunen, P. Vahimaa, M. Honkanen, O. Salminen, and E. Noponen, “Zeroth-order complex-amplitude modulation with dielectric Fourier-type diffractive elements,” J. Mod. Opt. 43, 1389–1398 (1996).
  30. V. Kettunen, P. Vahimaa, J. Turunen, and E. Noponen, “Zeroth-order coding of complex amplitude in two dimensions,” J. Opt. Soc. Am. A 14, 808–815 (1997).
  31. W. J. Dallas, Computer Generated Holograms, B. R. Frieden, ed., Vol. 41 of Topics in Applied Physics Series (Springer-Verlag, Berlin, 1980), Chap. 6.
  32. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
  33. J. A. Davis, D. M. Cottrell, J. E. Davis, and R. A. Lilly, “Fresnel lens-encoded binary phase-only filters for optical pattern recognition,” Opt. Lett. 14, 659–661 (1989).
  34. J. A. Davis, D. M. Cottrell, and R. P. Tiangco, “Analysis of the phase-only filter,” in Optical Pattern Recognition VI, D. P. Casasent and T. H. Chao, eds., Proc. SPIE 2490, 77–87 (1994).
  35. F. T. S. Yu, Optical Information Processing (Wiley-Interscience, New York, 1983), Chap. 7, pp. 198–202.
  36. I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in a real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144–150 (1998).
  37. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992), Chap. 3, pp. 123–128.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited