OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 23 — Aug. 10, 1999
  • pp: 5039–5045

Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device

Guoqiang Li, Feng Qian, Hao Ruan, and Liren Liu  »View Author Affiliations


Applied Optics, Vol. 38, Issue 23, pp. 5039-5045 (1999)
http://dx.doi.org/10.1364/AO.38.005039


View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio.

© 1999 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.3760) Optics in computing : Logic-based optical processing
(200.4740) Optics in computing : Optical processing
(200.4960) Optics in computing : Parallel processing

History
Original Manuscript: February 25, 1999
Revised Manuscript: April 16, 1999
Published: August 10, 1999

Citation
Guoqiang Li, Feng Qian, Hao Ruan, and Liren Liu, "Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device," Appl. Opt. 38, 5039-5045 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-23-5039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, D. Casasent, D. Neft, M. Carlotto, “Accurate numerical computation by optical convolution,” in 1980 International Optical Computing Conference II, W. T. Rhodes, ed., Proc. SPIE232, 151–156 (1980). [CrossRef]
  2. P. S. Guilfoyle, “Systolic acousto-optic binary convolver,” Opt. Eng. 23, 20–25 (1984). [CrossRef]
  3. D. Casasent, B. K. Taylor, “Banded-matrix high-performance algorithm and architecture,” Appl. Opt. 24, 1476–1480 (1985). [CrossRef] [PubMed]
  4. G. Li, L. Liu, L. Shao, Y. Yin, “Modified direct twos-complement parallel array multiplication algorithm for optical complex matrix operation,” Appl. Opt. 34, 1321–1328 (1995). [CrossRef] [PubMed]
  5. G. Li, L. Liu, L. Shao, Z. Wang, “Negabinary arithmetic algorithms for digital parallel optical computation,” Opt. Lett. 19, 1337–1339 (1994). [CrossRef] [PubMed]
  6. A. P. Goutzoulis, D. K. Davies, E. C. Malarkey, “Prototype position-encoded residue look-up table using laser diodes,” Opt. Commun. 61, 302–308 (1987). [CrossRef]
  7. B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986). [CrossRef]
  8. K. Hwang, A. Louri, “Optical multiplication and division using modified-signed-digit symbolic substitution,” Opt. Eng. 28, 364–372 (1989). [CrossRef]
  9. B. Ha, Y. Li, “Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor,” Appl. Opt. 33, 3647–3662 (1994). [CrossRef] [PubMed]
  10. D. Casasent, P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994). [CrossRef] [PubMed]
  11. K. W. Wong, L. M. Cheng, “Optical modified signed-digit addition based on binary logical operations,” Opt. Laser Technol. 26, 213–217 (1994). [CrossRef]
  12. B. Wang, F. Yu, X. Liu, P. Gu, J. Tang, “Optical modified signed-digit addition module based on Boolean polarization-encoded logic algebra,” Opt. Eng. 35, 2989–2994 (1996). [CrossRef]
  13. Y. Li, G. Eichmann, “Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements,” Appl. Opt. 26, 2328–2333 (1987). [CrossRef] [PubMed]
  14. A. L. Cherri, M. A. Karim, “Modified-signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef] [PubMed]
  15. S. Zhou, S. Campbell, P. Yeh, H.-K. Liu, “Two-stage modified signed-digit optical computing by spatial data encoding and polarization multiplexing,” Appl. Opt. 34, 793–802 (1995). [CrossRef] [PubMed]
  16. A. A. S. Awwal, “Recoded signed-digit binary addition-subtraction using optoelectronic symbolic substitution,” Appl. Opt. 31, 3205–3208 (1992). [CrossRef] [PubMed]
  17. M. S. Alam, A. A. S. Awwal, M. A. Karim, “Digital optical processing based on higher-order modified signed-digit symbolic substitution,” Appl. Opt. 31, 2419–2425 (1992). [CrossRef] [PubMed]
  18. M. M. Mirsalehi, T. K. Gaylord, “Logical minimization of multilevel coded functions,” Appl. Opt. 25, 3078–3088 (1986). [CrossRef] [PubMed]
  19. Y. Li, D. H. Kim, A. Kostrzewski, G. Eichmann, “Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989). [CrossRef] [PubMed]
  20. H. Huang, M. Itoh, T. Yatagai, “Modified signed-digit arithmetic based on redundant bit representation,” Appl. Opt. 33, 6146–6156 (1994). [CrossRef] [PubMed]
  21. M. S. Alam, “Efficient trinary signed-digit symbolic arithmetic,” Opt. Lett. 19, 353–355 (1994). [CrossRef] [PubMed]
  22. M. M. Hossain, J. U. Ahmed, A. A. S. Awwal, H. E. Michel, “Optical implementation of an efficient modified signed-digit binary addition,” Opt. Laser Technol. 30, 49–55 (1998). [CrossRef]
  23. M. S. Alam, Y. Ahuja, A. K. Cherri, A. Chatterjea, “Symmetrically recoded quaternary signed-digit arithmetic using a shared content-addressable memory,” Opt. Eng. 35, 1141–1149 (1996). [CrossRef]
  24. G. Li, L. Liu, H. Cheng, H. Jing, “Simplified quaternary signed-digit arithmetic and its optical implementation,” Opt. Commun. 137, 389–396 (1997). [CrossRef]
  25. G. Li, L. Liu, L. Shao, Y. Yin, J. Hua, “Parallel optical negabinary arithmetic based on logic operations,” Appl. Opt. 36, 1011–1016 (1997). [CrossRef] [PubMed]
  26. S. Zhang, M. Karim, “One-step optical negabinary and modified signed-digit adder,” Opt. Laser Technol. 30, 193–198 (1998). [CrossRef]
  27. J. Tanida, Y. Ichioka, “Optical logic array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983). [CrossRef]
  28. T. Yatagai, “Optical space-variant logic-gate array based on spatial encoding technique,” Opt. Lett. 11, 260–262 (1986). [CrossRef] [PubMed]
  29. Y. Li, G. Eichmann, R. R. Alfano, “Optical computing using hybrid encoded shadow-casting,” Appl. Opt. 25, 2636–2638 (1986). [CrossRef] [PubMed]
  30. M. Karim, A. A. S. Awwal, A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987). [CrossRef] [PubMed]
  31. G. Li, L. Liu, J. Hua, “Unified optical negabinary arithmetic with polarization-encoded optical shadow-casting,” Opt. Laser Technol. 29, 221–227 (1997). [CrossRef]
  32. G. Eichmann, Y. Li, R. R. Alfano, “Optical binary coded ternary arithmetic and logic,” Appl. Opt. 25, 3113–3121 (1986). [CrossRef] [PubMed]
  33. F. T. S. Yu, S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks (Wiley, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited