OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 23 — Aug. 10, 1999
  • pp: 5073–5077

Self-apodization of low-resolution pixelated lenses

Victor Arrizón, Edgardo Carreón, and Luis A. González  »View Author Affiliations


Applied Optics, Vol. 38, Issue 23, pp. 5073-5077 (1999)
http://dx.doi.org/10.1364/AO.38.005073


View Full Text Article

Enhanced HTML    Acrobat PDF (101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a pixelated lens with appropriate parameters exhibits an apodized point-spread function that originates in the finite size of the pixel’s pupil. We evaluate numerically the degree of apodization and the enlargement associated with the point-spread function in terms of the parameters that characterize the pixelated lens.

© 1999 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.1230) Optical design and fabrication : Apodization
(220.2560) Optical design and fabrication : Propagating methods
(220.3620) Optical design and fabrication : Lens system design
(230.6120) Optical devices : Spatial light modulators

History
Original Manuscript: January 15, 1999
Revised Manuscript: March 5, 1999
Published: August 10, 1999

Citation
Victor Arrizón, Edgardo Carreón, and Luis A. González, "Self-apodization of low-resolution pixelated lenses," Appl. Opt. 38, 5073-5077 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-23-5073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Cottrell, J. A. Davis, T. R. Hedman, R. A. Lilly, “Multiple imaging phase-encoded optical elements written as programmable spatial light modulators,” Appl. Opt. 29, 2505–2509 (1990). [CrossRef] [PubMed]
  2. J. A. Davis, W. V. Brandt, D. M. Cottrell, R. M. Bunch, “Spatial image differentiation using programmable binary optical elements,” Appl. Opt. 30, 4610–4614 (1991). [CrossRef] [PubMed]
  3. E. Carcolé, J. Campos, S. Bosch, “Diffraction theory of Fresnel lenses encoded in low-resolution devices,” Appl. Opt. 33, 162–174 (1994). [CrossRef] [PubMed]
  4. E. Carcolé, J. Campos, I. Juvells, S. Bosch, “Diffraction efficiency of low-resolution Fresnel encoded lenses,” Appl. Opt. 33, 6741–6746 (1994). [CrossRef] [PubMed]
  5. E. Carcolé, J. Campos, I. Juvells, J. R. de F. Moneo, “Diffraction theory of optimized low-resolution Fresnel encoded lenses,” Appl. Opt. 34, 5952–5960 (1995). [CrossRef] [PubMed]
  6. J. A. Davis, J. J. Heiskala, A. M. Field, D. M. Cottrell, “Programmable Dammann grating interconnections using Fourier transform lenses written onto spatial light modulators,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 237–243 (1994). [CrossRef]
  7. J. A. Davis, A. M. Field, J. J. Heiskala, D. M. Cottrell, “Phase analysis of diffracted beams using multiplexed Fourier transform lenses,” Opt. Eng. 34, 50–55 (1995). [CrossRef]
  8. Y. Takaki, “Electro-optical implementation of learning architecture to control point spread function of liquid crystal active lens,” in Optical Implementation of Image Processing, B. Javidi, J. L. Horner, eds., Proc. SPIE2565, 205–214 (1995). [CrossRef]
  9. Y. Takaki, H. Ohzu, “Reconfigurable lens with an electro-optical learning system,” Appl. Opt. 35, 6896–6908 (1996). [CrossRef] [PubMed]
  10. Y. Takaki, “Electro-optical feedback system for controlling a reconfigurable lens,” in Optical Information Science and Technology (OIST 97): Computer and Holographic Optics and Image Processing, A. L. Mikaelian, ed., Proc. SPIE3348, 178–185 (1998).
  11. V. Arrizón, S. Kinne, S. Sinzinger, “Efficient detour-phase encoding of multilevel phase elements,” Appl. Opt. 37, 5454–5460 (1998). [CrossRef]
  12. P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics III, E. Wolf, ed. (North-Holland, Amsterdam, 1964), p. 240.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited