OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5118–5121

Application of pulsed photoacoustics in water at high pressure

Scott S. Freeborn, John Hannigan, and Hugh A. MacKenzie  »View Author Affiliations


Applied Optics, Vol. 38, Issue 24, pp. 5118-5121 (1999)
http://dx.doi.org/10.1364/AO.38.005118


View Full Text Article

Enhanced HTML    Acrobat PDF (77 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of pulsed photoacoustics to the study of liquids at pressures of up to 350 bars is discussed. The design and development of an in-line sensor for the subsea monitoring of crude oil concentrations in water is reported. Crude oil detection sensitivities at parts per million concentrations were achieved with prototype instrumentation. A comparison of experimental results and a theoretical prediction of the pressure dependence of the pulsed photoacoustic response from water is outlined. The results demonstrate that existing models that describe pulsed photoacoustic generation in liquids are applicable to high-pressure conditions.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(110.5120) Imaging systems : Photoacoustic imaging
(120.1880) Instrumentation, measurement, and metrology : Detection
(140.0140) Lasers and laser optics : Lasers and laser optics

History
Original Manuscript: March 15, 1999
Revised Manuscript: June 7, 1999
Published: August 20, 1999

Citation
Scott S. Freeborn, John Hannigan, and Hugh A. MacKenzie, "Application of pulsed photoacoustics in water at high pressure," Appl. Opt. 38, 5118-5121 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-24-5118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Park, K. B. Shin, “Optoacoustic detection of a liquid kinetic-cooling effect in the liquid phase,” Appl. Opt. 34, 7653–7655 (1995). [CrossRef] [PubMed]
  2. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997). [CrossRef] [PubMed]
  3. I. G. Calasso, V. Funtov, M. W. Sigrist, “Analysis of isotopic CO2 mixtures by laser photoacoustic spectroscopy,” Appl. Opt. 36, 3212–3216 (1997). [CrossRef] [PubMed]
  4. J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998). [CrossRef]
  5. K. Song, H. Cha, J. Lee, I. A. Veselovskii, “Application of optical parametric oscillators to photoacoustic studies in semiconductors,” Appl. Phys. B 61, 547–552 (1995). [CrossRef]
  6. M. W. Sigrist, “Trace gas monitoring by laser-photoacoustic spectroscopy,” Infrared Phys. Technol. 36, 415–425 (1995). [CrossRef]
  7. W. Lahmann, H. J. Ludewig, H. Welling, “Opto-acoustic trace analysis in liquids with the frequency modulated beam of an argon ion laser,” J. Anal. Chem. 49, 549–551 (1997). [CrossRef]
  8. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics, and Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 156–159.
  9. S. S. Freeborn, J. Hannigan, F. Greig, R. A. Suttie, H. A. MacKenzie, “A pulsed photoacoustic instrument for the detection of crude oil concentrations in produced water,” Rev. Sci. Instrum. 69, 3948–3952 (1998). [CrossRef]
  10. J. Hannigan, F. Greig, S. S. Freeborn, H. A. MacKenzie, “A pulsed photoacoustic system for the spectroscopy and monitoring of hydrocarbon liquids using stimulated Raman scattering in a silica fibre as a near-infrared source,” Meas. Sci. Technol. 10, 93–99 (1999). [CrossRef]
  11. P. Hodgson, K. M. Quan, H. A. MacKenzie, S. S. Freeborn, J. Hannigan, E. M. Johnston, F. Greig, T. D. Binnie, “Application of pulsed laser photoacoustic sensors in monitoring oil contamination in water,” Sens. Actuators B 29, 339–344 (1995). [CrossRef]
  12. H. A. MacKenzie, G. B. Christison, P. Hodgson, D. Blanc, “A laser photoacoustic sensor for analyte detection in aqueous systems,” Sens. Actuators B 11, 213–220 (1993). [CrossRef]
  13. P. Hodgson, H. A. MacKenzie, G. B. Christison, K. M. Quan, Near Infrared Spectroscopy: Bridging the Gap between Data Analysis and NIR Applications (Ellis Horwood, London, 1992), pp. 407–412.
  14. J. P. Ray, F. R. Engelhardt, Produced Water: Technological/Environmental Issues and Solutions (Plenum, New York, 1992). [CrossRef]
  15. H. M. Lai, K. Young, “Theory of the pulsed optoacoustic technique,” J. Acoust. Soc. Am. 72, 2000–2007 (1982). [CrossRef]
  16. J-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983). [CrossRef]
  17. B. Sullivan, A. C. Tam, “Profile of laser-produced acoustic pulse in a liquid,” J. Acoust. Soc. Am. 75, 437–441 (1984). [CrossRef]
  18. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986). [CrossRef]
  19. J. R. Collins, “The effect of high pressure on the near infrared absorption spectrum of certain liquids,” Phys. Rev. 39, 305–310 (1930). [CrossRef]
  20. L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, New York, 1984).
  21. R. S. Bradley, High Pressure Physics and Chemistry (Academic, New York, 1963).
  22. G. S. Kino, Acoustic Waves (Prentice-Hall, Englewood Cliffs, N.J., 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited