OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5144–5148

Passive FM laser operation and the stability of intracavity-doubled lasers

Douglas W. Anthon  »View Author Affiliations

Applied Optics, Vol. 38, Issue 24, pp. 5144-5148 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (78 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time-domain description of second-harmonic generation and steady-state spatial hole burning is used to model the performance of multimode intracavity-doubled lasers, avoiding some of the approximations implicit in rate equation models. Stable operation is predicted at the points of maximum power extraction, corresponding to passively locked FM laser operation, where the lack of amplitude modulation minimizes the nonlinear output coupling and the longitudinal-mode structure minimizes spatial hole burning. The laser intensity spectrum, predicted by this passive FM laser model, closely matches reported experimental results.

© 1999 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing

Original Manuscript: December 11, 1998
Revised Manuscript: May 3, 1999
Published: August 20, 1999

Douglas W. Anthon, "Passive FM laser operation and the stability of intracavity-doubled lasers," Appl. Opt. 38, 5144-5148 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tsunekane, N. Taguchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped 6-W continuous wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997). [CrossRef] [PubMed]
  2. V. Magni, G. Cerullo, S. DeSilvestri, O. Svelto, L. J. Qian, M. Daniailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,” Opt. Lett. 18, 2111–2113 (1993). [CrossRef]
  3. W. L. Nighan, J. Cole, “>6 W of stable 532 nm TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), postdeadline paper 4.
  4. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986). [CrossRef]
  5. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990). [CrossRef] [PubMed]
  6. D. W. Anthon, D. L. Sipes, T. J. Pier, M. R. Ressl, “Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electron. 28, 1148–1157 (1992). [CrossRef]
  7. J. Maeda, T. Numata, S. Kogosi, “Amplitude squeezing from singly resonant frequency-doubling laser,” IEEE J. Quantum Electron. 33, 1057–1067 (1997). [CrossRef]
  8. A. Siegman, Lasers (University Science, Mill Valley Calif., 1986).
  9. K. A. Stankov, V. P. Tzolov, M. G. Mirkov, “Frequency-domain analysis of the mode-locking process in a laser with a second-harmonic nonlinear mirror,” Opt. Lett. 16, 639–641 (1991). [CrossRef] [PubMed]
  10. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1985).
  11. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  12. N. Bloembergen, Nonlinear Optics (Benjamin, Reading, Mass., 1965).
  13. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited