OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5168–5180

Nonlinear optical beam propagation for optical limiting

Dmitriy I. Kovsh, Sidney Yang, David J. Hagan, and Eric W. Van Stryland  »View Author Affiliations

Applied Optics, Vol. 38, Issue 24, pp. 5168-5180 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We implement numerical modeling of high-energy laser-pulse propagation through bulk nonlinear optical materials using focused beams. An executable program with a graphical user interface is made available to researchers for modeling the propagation of beams through materials much thicker than the diffraction length (up to 103 times longer). Ultrafast nonlinearities of the bound-electronic Kerr effect and two-photon absorption as well as time-dependent excited-state and thermal nonlinearities are taken into account. The hydrodynamic equations describing the rarefaction of the medium that is due to heating are solved to determine thermal index changes for nanosecond laser pulses. We also show how this effect can be simplified in some cases by an approximation that assumes instantaneous expansion (so-called thermal lensing approximation). Comparisons of numerical results with several Z-scan, optical limiting and beam distortion experiments are presented. Possible application to optimization of a passive optical limiter design is discussed.

© 1999 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(190.4870) Nonlinear optics : Photothermal effects
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects

Original Manuscript: February 18, 1999
Revised Manuscript: May 26, 1999
Published: August 20, 1999

Dmitriy I. Kovsh, Sidney Yang, David J. Hagan, and Eric W. Van Stryland, "Nonlinear optical beam propagation for optical limiting," Appl. Opt. 38, 5168-5180 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-P. Nolting, R. Marz, “Results of benchmark tests for different numerical BPM algorithms,” IEEE J. Lightware Technol. 13, 216–224 (1995) and references therein. [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  3. M. D. Feit, J. A. Fleck, “Simple method for solving propagation problems in cylindrical geometry with fast Fourier transforms,” Opt. Lett. 14, 662–664 (1989). [CrossRef] [PubMed]
  4. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 130–160 (1976). [CrossRef]
  5. S. Hughes, J. M. Burzer, G. Spruce, B. S. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995). [CrossRef]
  6. E. A. Sziklas, E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method,” Appl. Opt. 14, 1874–1889 (1975). [CrossRef] [PubMed]
  7. D. J. Hagan, T. Xia, A. A. Said, T. H. Wei, E. W. Van Stryland, “High dynamic range passive optical limiters,” Int. J. Nonlinear Opt. Phys. 2, 483–501 (1993);L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993). [CrossRef]
  8. D. Kovsh, S. Yang, D. J. Hagan, E. W. Van Stryland, “Software for computer modeling of laser pulse propagation through the optical system with nonlinear optical elements,” in Nonlinear Optical Liquids for Power Limiting and Imaging, C. M. Lawson, ed., Proc. SPIE3472, 163–177 (1998). [CrossRef]
  9. C. T. Law, G. A. Swartzlander, “Implementation of a package for optical limiter modeling,” in Nonlinear Optical Liquids and Power Limiters, C. M. Lawson, ed., Proc. SPIE3146, 95–106 (1997). [CrossRef]
  10. M. Sheik-bahae, A. A. Said, E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef] [PubMed]
  11. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  12. G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426–1428 (1992). [CrossRef]
  13. W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71, 7–14 (1981). [CrossRef]
  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986).
  15. S. T. Hendow, S. A. Shakir, “Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems,” Appl. Opt. 25, 1759–1764 (1986). [CrossRef] [PubMed]
  16. T. Xia, “Modeling and experimental studies of nonlinear optical self-action,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1994).
  17. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992). [CrossRef]
  18. P. Miles, “Bottleneck optical limiters: the optimal use of excited-state absorbers,” Appl. Opt. 33, 6965–6979 (1994). [CrossRef] [PubMed]
  19. H. S. Nalwa, S. Miyata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997); J. W. Perry, “Organic and metal-containing reverse saturable absorbers for optical limiters,” Chap. 13, pp. 813–840.
  20. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997). [CrossRef] [PubMed]
  21. O. V. Przhonska, J. H. Lim, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, “Nonlinear light absorption of polymethine dyes in liquid and solid media,” J. Opt. Soc. Am. B 15, 802–809 (1998). [CrossRef]
  22. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992). [CrossRef]
  23. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  24. S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhorukov, R. V. Khokhlov, “Thermal self-action of laser beams,” IEEE J. Quantum Electron. QE-4, 568–575 (1968). [CrossRef]
  25. C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981). [CrossRef]
  26. J. N. Hayes, “Thermal blooming of laser beams in fluids,” Appl. Opt. 11, 455–461 (1972). [CrossRef] [PubMed]
  27. A. J. Twarowski, D. S. Kliger, “Multiphoton absorption spectra using thermal blooming. I. Theory,” Chem. Phys. 20, 253–258 (1977). [CrossRef]
  28. S. J. Sheldon, L. V. Knight, J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  29. P. R. Longaker, M. M. Litvak, “Perturbation of the refractive index of absorbing media by a pulsed laser beam,” J. Appl. Phys. 40, 4033–4041 (1969). [CrossRef]
  30. G. Liu, “Theory of the photoacoustic effect in condensed matter,” Appl. Opt. 21, 955–960 (1982). [CrossRef] [PubMed]
  31. C. A. Carter, J. M. Harris, “Comparison of model describing the thermal lens effect,” Appl. Opt. 23, 476–481 (1984). [CrossRef]
  32. A. M. Olaizola, G. Da Costa, J. A. Castillo, “Geometrical interpretation of a laser-induced thermal lens,” Opt. Eng. 32, 1125–1130 (1993). [CrossRef]
  33. F. Jurgensen, W. Schroer, “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995). [CrossRef] [PubMed]
  34. S. Wu, N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurements in thin films,” J. Appl. Phys. 67, 1170–1182 (1990). [CrossRef]
  35. S. R. J. Brueck, H. Kildal, L. J. Belanger, “Photo-acoustic and photo-refractive detection of small absorptions in liquids,” Opt. Commun. 34, 199–204 (1980). [CrossRef]
  36. J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983). [CrossRef]
  37. P. Brochard, V. Grolier-Mazza, R. Cabanel, “Thermal nonlinear refraction in dye solutions: a study of the transient regime,” J. Opt. Soc. Am. B 14, 405–414 (1997). [CrossRef]
  38. J.-G. Tian, C. Zhang, G. Zhang, J. Li, “Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea,” Appl. Opt. 32, 6628–6632 (1993). [CrossRef] [PubMed]
  39. Y. M. Cheung, S. K. Gayen, “Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B 11, 636–643 (1994). [CrossRef]
  40. J. Castillo, V. P. Kozich, A. Marcano O., “Thermal lensing resulting from one- and two-photon absorption studied with a two-color time-resolved Z scan,” Opt. Lett. 19, 171–173 (1994).
  41. D. I. Kovsh, D. J. Hagan, E. W. Van Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Exp. 4, 315–327 (1999). [CrossRef]
  42. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  43. A. A. Said, T. Xia, D. J. Hagan, A. Wajsgrus, S. Yang, D. Kovsh, M. A. Decker, S. Khodja, E. W. Van Stryland, “Liquid-based multicell optical limiter,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE2853, 158–169 (1996).
  44. B. L. Justus, Z. H. Kafafi, A. L. Huston, “Excited-state absorption-enhanced thermal optical limiting in C60,” Opt. Lett. 18, 1603–1605 (1993). [CrossRef] [PubMed]
  45. B. L. Justus, A. J. Campillo, A. L. Huston, “Thermal-defocusing/scattering optical limiter,” Opt. Lett. 19, 673–675 (1994). [CrossRef] [PubMed]
  46. K. Mansour, E. W. Van Stryland, M. J. Soileau, “Nonlinear properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992). [CrossRef]
  47. R. R. Michael, C. M. Lawson, “Nonlinear transmission and reflection at a dielectric-carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992). [CrossRef] [PubMed]
  48. D. Landau, E. M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics (Pergamon, New York, 1996), Vol. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited