OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 24 — Aug. 20, 1999
  • pp: 5218–5228

Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar

Takashi Y. Nakajima, Tadashi Imai, Osamu Uchino, and Tomohiro Nagai  »View Author Affiliations


Applied Optics, Vol. 38, Issue 24, pp. 5218-5228 (1999)
http://dx.doi.org/10.1364/AO.38.005218


View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: December 21, 1998
Revised Manuscript: May 24, 1999
Published: August 20, 1999

Citation
Takashi Y. Nakajima, Tadashi Imai, Osamu Uchino, and Tomohiro Nagai, "Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar," Appl. Opt. 38, 5218-5228 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-24-5218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Wetherald, S. Manabe, “Cloud feedback processes in a general circulation model,” J. Atmos. Sci. 45, 1397–1415 (1988). [CrossRef]
  2. J. A. Coakley, R. L. Bernstein, P. A. Durkee, “Effect of ship-stack effluents on cloud reflectivity,” Science 237, 1020–1022 (1987). [CrossRef] [PubMed]
  3. S. Twomey, M. Piepgrass, T. L. Wolfe, “An assessment of the impact of pollution on global cloud albedo,” Tellus 36, 356–366 (1984). [CrossRef]
  4. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994). [CrossRef]
  5. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX region,” J. Atmos. Sci. 52, 4043–4059 (1995). [CrossRef]
  6. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998). [CrossRef]
  7. M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992). [CrossRef]
  8. T. Nagai, O. Uchino, T. Fujimoto, Y. Sai, K. Tamashiro, R. Nomura, T. Sunagawa, “Lidar observation of the stratospheric aerosol layer over Okinawa, Japan, after the Mt. Pinatubo Volcanic Eruption,” J. Meteorol. Soc. Jpn. 71, 749–754 (1993).
  9. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef] [PubMed]
  10. S. P. Palm, S. H. Melfi, D. L. Carter, “New airborne scanning lidar system: applications for atmospheric remote sensing,” Appl. Opt. 33, 5674–5681 (1994). [CrossRef] [PubMed]
  11. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994). [CrossRef] [PubMed]
  12. J. D. Spinhirne, S. Chudamani, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997). [CrossRef] [PubMed]
  13. M. P. McCormick, “Spaceborne lidar,” Rev. Laser Eng. 23, 175–193 (1995). [CrossRef]
  14. Y. Y. Gu, C. S. Gardner, M. C. Kelley, “Validation of the Lidar-in-Space Technology Experiment: stratospheric temperature and aerosol measurements,” Appl. Opt. 36, 5148–5157 (1997). [CrossRef] [PubMed]
  15. P. B. Russel, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent wavelength technique,” Appl. Opt. 21, 1541–1553 (1982). [CrossRef]
  16. J. R. Biard, W. N. Shaunfield, “A model of the avalanche photodiode,” IEEE Trans. Electron Devices 14, 233–238 (1967). [CrossRef]
  17. H. Melchoir, M. Fisher, F. Arams, “Photo-detectors for optical communications systems,” Proc. IEEE 58, 1466–1486 (1970). [CrossRef]
  18. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photo-diodes,” RCA Rev. 35, 234–278 (1974).
  19. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  20. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  21. K. Kawamoto, “On the global distribution of the water cloud microphysics derived from AVHRR remote sensing,” Ph.D. dissertation University of Tokyo, Tokyo, Japan, 1999).
  22. T. Y. Nakajima, T. Nakajima, A. A. Kokhanovsky, “Radiation transfer calculations with phase functions of irregular ice particles obtained by geometric-optics approximation,” in European Symposium on Aerospace Remote Sensing, J. Haigh, R. Saunders, C. Oliver, eds. (Institution of Electrical Engineers, London, 1997).
  23. A. A. Kokhanovsky, T. Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape,” J. Phys. D 31, 1329–1335 (1998). [CrossRef]
  24. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  25. J. D. Spinhirne, “Lidar clear atmosphere multiple scattering dependence on receiver range,” Appl. Opt. 21, 2467–2468 (1982). [CrossRef] [PubMed]
  26. J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study,” J. Appl. Meteorol. 30, 1245–1259 (1991). [CrossRef]
  27. J. Fischer, W. Cordes, A. Schimits-Peiffer, W. Renger, P. Moerl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited