OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5298–5305

Micromachined optical fiber current sensor

R. L. Heredero, Ramón Fernández de Caleya, Héctor Guerrero, Pere Los Santos, Mari Cruz Acero, and Jaume Esteve  »View Author Affiliations

Applied Optics, Vol. 38, Issue 25, pp. 5298-5305 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a micromachined optical fiber current sensor. The sensing element consists of a squared silicon membrane (8 mm long and 20 µm thick) that has a cylindrical permanent magnet (NdFeB alloy, 3-mm diameter, 1.5 mm high) fixed on its central region. This structure allows the permanent magnet to vibrate in the presence of the magnetic field gradient generated by an ac. A linear relation between the electrical current and the magnet displacement was measured with white-light interferometry with an optical fiber low-finesse Fabry–Perot microcavity. A measurement range of 0–70 A and a minimum detectable intensity of 20 mA were obtained when distance D between the membrane and the electrical power line was 5 mm. The output signal directly shows a linear response with distance D.

© 1999 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: March 11, 1999
Revised Manuscript: June 1, 1999
Published: September 1, 1999

R. L. Heredero, Ramón Fernández de Caleya, Héctor Guerrero, Pere Los Santos, Mari Cruz Acero, and Jaume Esteve, "Micromachined optical fiber current sensor," Appl. Opt. 38, 5298-5305 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Saito, Y. Fujii, K. Yokoyama, J. Hamasaki, Y. Ohno, “The laser current transformer for EHV power transmission lines,” IEEE J. Quantum Electron. 2, 255–259 (1966). [CrossRef]
  2. Y. Pelenc, “Transoptics: current transformers using magnetooptic effect for very high voltages,” L’Electricien 82, 63–66 (1969).
  3. W. Hermstein, “Development trends in the construction of measuring transformers—with special reference to unconventional instrument transformers for high voltages,” Elektrizitaetswirtschaft 68, 246–257 (1969).
  4. Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, the Fiber Optic Subcommittee, Power Systems Communications Committee, “Optical current sensors for power systems: a review,” IEEE Trans. Power Deliv. 9, 1778–1788 (1994).
  5. S. Matsushita, S. Konishi, Y. Sakurai, “Magnetooptical ammeter,” IEEE Trans. Magn. 6, 569–571 (1970). [CrossRef]
  6. A. D. Higham, J. D. Newman, “Measurement of current using Faraday rotation in glass fiber,” in Colloquium Digest on Novel Types of Transducer (IEEE, London, UK), pp. 1–2.
  7. G. W. Day, A. H. Rose, “Faraday effect sensors: the state of the art,” in Fiber Optic and Laser Sensors VI, R. P. DePaula, E. Udd, eds., Proc. SPIE985, 138–150 (1988). [CrossRef]
  8. Y. N. Ning, D. A. Jackson, “Review of optical current sensors using bulk-glass sensing elements,” Sens. Actuators A 39, 219–224 (1993). [CrossRef]
  9. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995). [CrossRef]
  10. Z. P. Wang, S. Q. Zhang, L. B. Zhang, “Recent advances in optical current-sensing techniques,” Sens. Actuators A 50, 169–175 (1995). [CrossRef]
  11. E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud, “Intensity-type fiber optic electric current sensor,” in Fiber Optic and Laser Sensors XI, R. DePaula, E. Udd, eds., Proc. SPIE1584, 110–117 (1991). [CrossRef]
  12. P. D. Dinev, “A two-dimensional remote fiber-optic magnetic field and current sensor,” Meas. Sci. Technol. 7, 1233–1237 (1997). [CrossRef]
  13. Y. Park, W. Seo, C. E. Lee, H. F. Taylor, “Fiber Fabry–Perot type optical current sensor with frequency ramped signal processing scheme,” J. Opt. Soc. (Korea) 2, 74–9 (1998). [CrossRef]
  14. Y. Zhan, M. Lu, “The analysis of an all multimode fiber electric current sensor with a fiber Fabry–Perot interferometer,” in International Conference on Optoelectronic Science and Engineering ’90, E. M. Campbell, ed., Proc. SPIE1230, 539–540 (1990).
  15. B. Wagner, W. Benecke, “Magnetically driven microactuator,” in Microsystem Technologies 90, H. Reichl, ed. (Springer-Verlag, Berlin, 1990), pp. 838–843. [CrossRef]
  16. F. Ayela, T. Fournier, J. Chaussy, “A micromachined silicon magnetometer,” Sens. Actuators A 61, 339–341 (1997). [CrossRef]
  17. R. A. Pinnock, “Micromachined silicon resonant sensors with robust optical interrogation,” in Sensors VI: Technology Systems and Applications, K. T. V. Grattan, A. T. Augousti, eds., (Institute of Physics Publishing, Bristol, 1993), Sec. B, pp. 141–146.
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 7.
  19. A. D. Kersey, D. A. Jackson, M. Corke, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–75 (1983). [CrossRef]
  20. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991). [CrossRef] [PubMed]
  21. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992). [CrossRef] [PubMed]
  22. N. E. Fisher, D. A. Jackson, “A common-mode optical noise-rejection scheme for an extrinsic Faraday current sensor,” Meas. Sci. Technol. 7, 796–800 (1996). [CrossRef]
  23. N. C. Pistoni, M. Martinelli, “Vibration-insensitive fiber-optic current sensor,” Opt. Lett. 18, 314–316 (1993). [CrossRef] [PubMed]
  24. A. J. Rogers, J. Xu, J. Yao, “Vibration immunity for optical-fiber current measurement,” J. Lightwave Technol. 13, 1371–1377 (1995). [CrossRef]
  25. M. J. Weber, “Faraday rotator materials for laser systems,” in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. SPIE681, 75–90 (1986). [CrossRef]
  26. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991). [CrossRef] [PubMed]
  27. T. W. Cease, J. G. Driggans, S. J. Weikel, “Optical voltage and current sensors used in a revenue metering system,” IEEE Trans. Power Deliv. 6, 1374–1379 (1991). [CrossRef]
  28. P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic ac current sensors using an intelligent ac-dc signal evaluation,” J. Lightwave Technol. 13, 1362–1370 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited