OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5413–5417

Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma

Klaus Bergmann, Guido Schriever, Oliver Rosier, Martin Müller, Willi Neff, and Rainer Lebert  »View Author Affiliations

Applied Optics, Vol. 38, Issue 25, pp. 5413-5417 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 1017 cm-3 and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11–18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented.

© 1999 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(260.7200) Physical optics : Ultraviolet, extreme
(300.6560) Spectroscopy : Spectroscopy, x-ray
(350.5400) Other areas of optics : Plasmas

Original Manuscript: January 29, 1999
Revised Manuscript: May 21, 1999
Published: September 1, 1999

Klaus Bergmann, Guido Schriever, Oliver Rosier, Martin Müller, Willi Neff, and Rainer Lebert, "Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma," Appl. Opt. 38, 5413-5417 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Hawryluk, N. M. Ceglio, “Wavelength considerations in soft-x-ray projection lithography,” Appl. Opt. 32, 7062–7067 (1993). [CrossRef] [PubMed]
  2. E. Louis, H.-J. Voorma, N. B. Koster, F. Bijkerk, Yu. Ya. Platonov, S. Yu. Zuev, S. S. Andreev, E. A. Shamov, N. N. Salashchenko, “Multilayer coated reflective optics for extreme UV lithography,” Microelectron. Eng. 27, 235–238 (1995). [CrossRef]
  3. K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufi, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995). [CrossRef] [PubMed]
  4. J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Raab, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: printing of features smaller than 0.1 µm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990). [CrossRef]
  5. D. A. Tichenor, G. D. Kubiak, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, L. A. Brown, R. R. Freeman, W. M. Mansfield, O. R. Wood, D. M. Tennant, J. E. Bjorkholm, A. A. MacDowell, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, W. K. Waskiewitz, “Diffraction-limited soft-x-ray projection imaging using a laser plasma source,” Opt. Lett. 16, 1557–1559 (1991). [CrossRef] [PubMed]
  6. M. A. Klosner, H. A. Bender, W. T. Silfvast, J. J. Rocca, “Intense plasma discharge source at 13.5 nm for extreme-ultraviolet lithography,” Opt. Lett. 22, 34–36 (1997). [CrossRef] [PubMed]
  7. M. A. Klosner, W. T. Silfvast, “Intense xenon capillary discharge extreme-ultraviolet in the 10–16-nm-wavelength region,” Opt. Lett. 23, 1609–1611 (1998). [CrossRef]
  8. M. McGeoch, “Radio-frequency-preionized xenon z-pinch source for extreme ultraviolet lithography,” Appl. Opt. 37, 1651–1658 (1998). [CrossRef]
  9. J. Beouf, L. Pitchford, “Pseudospark discharges via computer simulation,” IEEE Trans. Plasma Sci. 19, 286–296 (1991). [CrossRef]
  10. W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993). [CrossRef]
  11. G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of charge coupled devices and a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997). [CrossRef]
  12. L. L. House, “Ionisation equilibrium of the elements from H to Fe,” Astrophys. J. (Suppl. VII) 81, 307–328 (1964). [CrossRef]
  13. R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leonard, eds. (Academic, New York, 1965), pp. 201–264.
  14. S. Larigaldi, “Study of the breakdown phase in a pseudospark switch: Part I—Basis experiments and crude model,” IEEE Trans. Plasma Sci. 23, 362–368 (1995). [CrossRef]
  15. M. Toepler, “Zur Kenntnis der Gesetze der Gleitfunkenentladung,” Ann. Phys. (Leipzig) 21, 193 (1906). [CrossRef]
  16. R. Tkotz, A. Görtler, J. Christiansen, S. Döllinger, K. Frank, F. Heine, U. Herleb, S. Insam, R. Kowalewicz, T. Mehr, A. Polster, U. Prucker, M. Schlaug, A. Schwandner, “Pseudospark switches—technological aspects and applications,” IEEE Trans. Plasma Sci. 23, 309–317 (1995). [CrossRef]
  17. J. Blackburn, P. Carroll, J. Costello, G. O’Sullivan, “Spectra of Xe vii, viii, and ix in the extreme ultraviolet: 4d–mp,nf transitions,” J. Opt. Soc. Am. 73, 1325–1329 (1983). [CrossRef]
  18. V. Kaufmann, J. Sugar, J. L. Tech, “Analysis of the 4d9–4d85p transitions in nine-times ionized xenon (Xe x),” J. Opt. Soc. Am. 73, 691–693 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited