OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5480–5490

Spectroscopic Diffuse Optical Tomography for the Quantitative Assessment of Hemoglobin Concentration and Oxygen Saturation in Breast Tissue

Troy O. McBride, Brian W. Pogue, Ellen D. Gerety, Steven B. Poplack, Ulf L. Osterberg, and Keith D. Paulsen  »View Author Affiliations


Applied Optics, Vol. 38, Issue 25, pp. 5480-5490 (1999)
http://dx.doi.org/10.1364/AO.38.005480


View Full Text Article

Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared (NIR) spectroscopic diffuse tomography has been used to map the hemoglobin concentration and the hemoglobin oxygen saturation quantitatively in tissuelike phantoms and to determine average values <i>in vivo</i>. A series of phantom calibrations were performed to achieve quantitatively accurate images of the absorption and the reduced scattering coefficients at multiple optical wavelengths. A least-squares fit was applied to absorption-coefficient images at multiple NIR wavelengths to obtain hemoglobin images of the concentration and the hemoglobin oxygen saturation. Objects of varying hemoglobin concentration and oxygen saturation within highly scattering media were localized and imaged to within 15% of their actual values. The average hemoglobin concentration and oxygen saturation of breast tissue was measured <i>in vivo</i> for two women volunteers. The potential application for the diagnosis of breast tumors is discussed.

© 1999 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6960) Medical optics and biotechnology : Tomography

Citation
Troy O. McBride, Brian W. Pogue, Ellen D. Gerety, Steven B. Poplack, Ulf L. Osterberg, and Keith D. Paulsen, "Spectroscopic Diffuse Optical Tomography for the Quantitative Assessment of Hemoglobin Concentration and Oxygen Saturation in Breast Tissue," Appl. Opt. 38, 5480-5490 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-25-5480


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London 352, 661–668 (1997).
  2. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
  3. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1988 (1998).
  4. D. T. Delpy and M. Cope, “Quantification in tissue near infrared spectroscopy,” Philos. Trans. R. Soc. London 352, 649–659 (1997).
  5. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, and J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Philos. Trans. R. Soc. London 352, 707–716 (1997).
  6. E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy tissue-simulating phantoms containing erthrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
  7. A. F. Profio and G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
  8. B. A. Teicher, “Physiologic mechanisms of therapeutic resistance: blood flow and hypoxia,” Hematol. Oncol. Clin. North Am. 9, 475–506 (1995).
  9. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
  10. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–943 (1996).
  11. P. Okunieff, M. Hoeckel, E. P. Dunphy, K. Schlenger, C. Knoop, and P. Vaupel, “Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone,” Int. J. Radiat. Oncol. Biol. Phys. 26, 631–636 (1993).
  12. M. Hoeckel, C. Knoop, K. Schlenger, B. Vorndorn, E. Baubmann, M. Mitze, P. G. Knapstein, and P. Vaupel, “Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix,” Radiotherapy Oncol. 26, 45–50 (1993).
  13. H. Jiang, K. D. Paulsen, U. L. Österberg, and M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
  14. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
  15. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
  16. D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987).
  17. H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1219 (1986).
  18. V. Quaresima, S. J. Matcher, and M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
  19. H. Jiang, K. D. Paulsen, and U. L. Österberg, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998).
  20. S. R. Arridge and M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London B 352, 717–726 (1997).
  21. B. W. Pogue, M. Testorf, T. McBride, U. Österberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.osa.org/opticsexpress.
  22. H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
  23. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
  25. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
  26. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneki, M. Yoshida, and B. Chance, “Quantitative measurement of optical properties in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
  27. B. L. Hart, R. T. Steinbock, F. A. Mettler, D. R. Pathak, and S. A. Bartlow, “Age and race changes in mammographic parenchymal patterns,” Cancer 63, 2537–2539 (1989).
  28. T. O. McBride, B. W. Pogue, U. L. Österberg, and K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597 (in press).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited