OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5499–5510

Scattering of He–Ne laser light by an average-sized red blood cell

Stephanos V. Tsinopoulos and Demosthenes Polyzos  »View Author Affiliations

Applied Optics, Vol. 38, Issue 25, pp. 5499-5510 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scattering of He–Ne laser light by an average-sized human red blood cell (RBC) is investigated numerically. The RBC is modeled as an axisymmetric, low-contrast dielectric, biconcave disk. The interaction problem is treated numerically by means of a boundary-element methodology. The differential scattering cross sections (DSCS’s) corresponding to various cell orientations are calculated. The numerical results obtained for the exact RBC geometry are compared with those corresponding to a scattering problem in which the cell is assumed to be either a volume-equivalent sphere or an oblate spheroid. A parametric study demonstrating the dependence of the DSCS on the wavelength of the incident wave and the cell’s refractive index is presented.

© 1999 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(290.5850) Scattering : Scattering, particles

Original Manuscript: February 8, 1999
Revised Manuscript: May 21, 1999
Published: September 1, 1999

Stephanos V. Tsinopoulos and Demosthenes Polyzos, "Scattering of He–Ne laser light by an average-sized red blood cell," Appl. Opt. 38, 5499-5510 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  2. J. Plasek, T. Marik, “Determination of undeformable erythrocytes in blood samples using light scattering,” Appl. Opt. 21, 4335–4338 (1982). [CrossRef] [PubMed]
  3. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988). [CrossRef] [PubMed]
  4. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998). [CrossRef]
  5. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970). [CrossRef] [PubMed]
  6. V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. A 8, 1135–1141 (1991). [CrossRef] [PubMed]
  7. J. Kim, J. C. Lin, “Successive order scattering transport approximation for laser light propagation in whole blood medium,” IEEE Trans. Biomed. Eng. 45, 505–510 (1998). [CrossRef] [PubMed]
  8. A. H. Gandjbakhche, P. Mills, P. Snabre, “Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension,” Appl. Opt. 33, 1070–1078 (1994). [CrossRef] [PubMed]
  9. G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998). [CrossRef]
  10. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1981). [CrossRef]
  11. G. J. Streekstra, A. G. Hoekstra, E. J. Nijhof, R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266–2272 (1993). [CrossRef] [PubMed]
  12. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  13. M. I. Mishchenko, L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  14. A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998). [CrossRef]
  15. D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, “Flow-cytometric light scattering measurements of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24, 1355–1365 (1985). [CrossRef]
  16. G. J. Streekstra, A. G. Hoekstra, R. M. Heethaar, “Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry,” Appl. Opt. 33, 7288–7296 (1994). [CrossRef] [PubMed]
  17. P. Mazeron, S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726–3735 (1996). [CrossRef] [PubMed]
  18. P. Mazeron, S. Muller, H. El. Azouri, “On intensity reinforcement in small-angle light scattering patterns of erythrocytes under shear,” Eur. Biophys. J. 26, 247–252 (1997). [CrossRef]
  19. P. Mazeron, S. Muller, H. El. Azouri, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34, 99–110 (1997). [CrossRef] [PubMed]
  20. G. S. Stamatakos, D. Yova, N. K. Uzunoglu, “Integral equation model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids: application in ektacytometry,” Appl. Opt. 36, 6503–6512 (1997). [CrossRef]
  21. J. T. Soini, A. V. Chernyshev, A. N. Shvalov, V. P. Maltsev, “Measurement of scattering patterns from individual nonspherical particles using scanning flow cytometer,” in Light Scattering by Nonspherical Particles, K. Lumme, J. W. Hovenier, K. Muinonen, J. Rahola, H. Laitinen, eds. (Observatory, University of Helsinki, Helsinki, Finland, 1997).
  22. J. D. Klett, R. A. Sutherland, “Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel–Kramers–Brillouin method,” Appl. Opt. 31, 373–386 (1992). [CrossRef] [PubMed]
  23. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230–235 (1999). [CrossRef]
  24. S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “3D boundary element method in electromagnetic wave scattering by small biological bodies,” in Third Hellenic-European Conference on Mathematics and Informatics: HERMIS ’96, E. A. Lipitakes, ed. (LEA, Athens, Greece, 1996).
  25. P. Mazeron, S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29, 68–77 (1998). [CrossRef]
  26. S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three-dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998). [CrossRef]
  27. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  28. S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999). [CrossRef]
  29. D. S. Jones, The Theory of Electromagnetism (Pergamon, London, 1964).
  30. IMSL Math/Library User’s Manual, Version 3.0 (Visual Numerics, Inc., Houston, Tex., 1994).
  31. W. C. O. Tsang, “The size and shape of human red blood cells,” M.S. thesis (University of California at San Diego, San Diego, Calif., 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited