OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 25 — Sep. 1, 1999
  • pp: 5511–5517

Precise, controlled laser delivery with evanescent optical waves

Brett A. Hooper, Yacov Domankevitz, Charles P. Lin, and R. Rox Anderson  »View Author Affiliations

Applied Optics, Vol. 38, Issue 25, pp. 5511-5517 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Precise laser surgery is possible with laser pulses at wavelengths that are strongly absorbed at the surface of tissue. However, pulses at these wavelengths (far UV, far infrared) are not compatible with fiber-optic transmission, making endoscopic surgical procedures inside the body difficult. We use evanescent optical waves to demonstrate an alternative for confining energy near the tissue surface. Precise, superficial tissue ablation is achieved with evanescent waves generated at a sapphire–tissue interface by a free-electron laser, where the ablation depth may be varied. A new class of precise, controlled laser surgical tools may be achieved in this novel approach for use in endoscopic procedures. Electromagnetic theory governing evanescent-wave tissue ablation is presented.

© 1999 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1020) Medical optics and biotechnology : Ablation of tissue
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves

Original Manuscript: March 11, 1999
Revised Manuscript: May 17, 1999
Published: September 1, 1999

Brett A. Hooper, Yacov Domankevitz, Charles P. Lin, and R. Rox Anderson, "Precise, controlled laser delivery with evanescent optical waves," Appl. Opt. 38, 5511-5517 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, C. M. Alder, “Excimer laser ablation of cornea and lens: experimental studies,” Ophthalmology 92, 741–748 (1985). [CrossRef] [PubMed]
  2. J. P. Cummings, J. T. Walsh, “Erbium laser ablation—the effect of dynamic optical properties,” Appl. Phys. Lett. 62, 1988–1990 (1993). [CrossRef]
  3. B. A. Hooper, C. Lin, Y. Domankevitz, R. R. Anderson, “Laser surgery with evanescent optical waves,” in Digest of Topical Meeting on Therapeutic Laser Applications (Optical Society of America, Washington, D.C.1998), pp. 41–43.
  4. A. J. Welch, M. Motamedi, S. Rastegar, G. L. LeCarpentier, E. D. Jansen, “Laser thermal ablation,” Photochem. Photobiol. 53, 815–823 (1991). [PubMed]
  5. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Partial vaporization model for pulsed mid-infrared laser ablation of water,” J. Appl. Phys. 78, 564–571 (1995). [CrossRef]
  6. R. Linsker, R. Srinivasan, J. J. Wynne, D. R. Alonso, “Far-ultraviolet laser ablation of atherosclerotic lesions,” Laser Surg. Med. 4, 201–206 (1984). [CrossRef]
  7. M. R. Prince, T. F. Deutsch, A. H. Shapiro, R. J. Margolis, A. R. Oseroff, J. T. Fallon, J. A. Parrish, R. R. Anderson, “Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm,” Proc. Natl. Acad. Sci. USA 83, 7064–7068 (1986). [CrossRef] [PubMed]
  8. P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Acoustic studies of the role of immersion in plasma-mediated laser ablation,” IEEE J. Quantum Electron. QE-23, 1845–1852 (1987). [CrossRef]
  9. R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Lasers Surg. Med. 12, 125–130 (1992). [CrossRef] [PubMed]
  10. M. R. Prince, G. M. LaMuraglia, P. Teng, T. F. Deutsch, R. R. Anderson, “Selective ablation of calcified arterial plaque with laser-induced plasmas,” IEEE J. Quantum Electron. QE-23, 1783–1786 (1987). [CrossRef]
  11. P. Teng, N. S. Nishioka, R. R. Anderson, T. F. Deutsch, “Optical studies of pulse laser fragmentation of biliary calculi,” Appl. Phys. B 42, 73–78 (1987). [CrossRef]
  12. J. T. Walsh, T. H. Flotte, R. R. Anderson, T. F. Deutsch, “Pulse CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8, 108–118 (1988). [CrossRef]
  13. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 81.
  14. F. Mirabella, Internal Reflection Spectroscopy, Vol. 15 of Practical Spectroscopy Series (Marcel Dekker, New York, 1992).
  15. R. Simhi, Y. Gotshal, D. Bunimovich, A. Sela, A. Katzir, “Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood,” Appl. Opt. 39, 3421–3425 (1996). [CrossRef]
  16. O. Kermani, H. Lubatschowski, T. Asshauer, W. Ertmer, A. Lukin, B. Ermakov, G. K. Krieglstein, “Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues,” Lasers Surg. Med. 13, 537–542 (1993). [CrossRef] [PubMed]
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited