OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 26 — Sep. 10, 1999
  • pp: 5631–5640

Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package

Xuezhe Zheng, Philippe J. Marchand, Dawei Huang, Osman Kibar, Nur S. E. Ozkan, and Sadik C. Esener  »View Author Affiliations

Applied Optics, Vol. 38, Issue 26, pp. 5631-5640 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (3234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI’s) can be integrated simply on electronic multichip modules (MCM’s) for intra-MCM–board interconnects. Our system-level packaging architecture is based on a modified folded 4f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than -20 dB at low frequency have been measured. The system is compact at only 10 in.3 (25.4 cm3) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

© 1999 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics

Original Manuscript: March 8, 1999
Revised Manuscript: June 7, 1999
Published: September 10, 1999

Xuezhe Zheng, Philippe J. Marchand, Dawei Huang, Osman Kibar, Nur S. E. Ozkan, and Sadik C. Esener, "Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package," Appl. Opt. 38, 5631-5640 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Krishnamoorthy, D. A. B. Miller, “Firehose architectures for free-space optically interconnected VLSI circuits,” J. Parallel Distrib. Comput. 41, 109–114 (1997). [CrossRef]
  2. P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C. Esener, U. Efron, “Optically augmented 3-D computer: system technology and architecture,” J. Parallel Distrib. Comput. 41, 20–35 (1997). [CrossRef]
  3. G. A. Betzos, P. A. Mitkas, “Performance evaluation of massively parallel processing architectures with three-dimensional optical interconnections,” Appl. Opt. 37, 315–325 (1998). [CrossRef]
  4. J. W. Goodman, F. J. Leonberger, S. C. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  5. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, S. C. Esener, C. C. Guest, P. Yu, T. J. Drabik, M. Feldman, S. H. Lee, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986). [CrossRef]
  6. W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, S. C. Esener, P. K. L. Yu, M. R. Feldman, S. H. Lee, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron Devices 34, 706–714 (1987). [CrossRef]
  7. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  8. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. 2, pp. 169–250.
  9. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  10. A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Optoelectron. 2, 55–76 (1996). [CrossRef]
  11. M. R. Feldman, J. E. Morris, I. Turlik, P. Magill, G. Adema, M. Yasin, A. Raja, “Holographic optical interconnects for VLSI multichip modules,” IEEE Trans. Components Packag. Manuf. Technol. B 17, 223–227 (1994). [CrossRef]
  12. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  13. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between opto-electronic and VLSI multistage interconnection networks,” IEEE J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  14. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995). [CrossRef] [PubMed]
  15. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for an optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  16. G. Yayla, P. Marchand, S. Esener, “Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies,” Appl. Opt. 37, 205–227 (1998). [CrossRef]
  17. S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1568 (1994). [CrossRef]
  18. D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996). [CrossRef] [PubMed]
  19. D. T. Neilson, E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2952 (1998). [CrossRef]
  20. F. Quercioli, B. Tiribilli, A. Mannoni, S. Acciai, “Optomechanics with LEGO,” Appl. Opt. 37, 3408–3416 (1998). [CrossRef]
  21. ARMA Design, Inc., 7887 Dunbrook Road, Suite A, San Diego, Calif. 92126.
  22. Optical Research Associates, 3280 East Foothill Boulevard, Suite 300, Pasadena, Calif. 91107.
  23. O. Kibar, D. A. V. Blerkom, C. Fan, P. J. Marchand, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” IEEE J. Lightwave Technol. 17, 546–555 (1999). [CrossRef]
  24. R. A. Morgan, J. Bristow, M. H. Brenner, J. Nohava, S. Bounnak, T. Marta, J. Lehman, Y. Liu, “Vertical cavity surface emitting lasers for spaceborne photonic interconnects,” in Photonics for Space Environments IV, E. W. Taylor, ed., Proc. SPIE2811, 232–242 (1996). [CrossRef]
  25. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S. P. Hui, G. J. Zydzik, K. W. Goosen, J. D. Wynn, B. J. Tseng, J. A. Walker, J. E. Cunningham, L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11, 128–130 (1999). [CrossRef]
  26. S. Esener, P. Marchand, “3D opto-electronic stacked processors: design and analysis,” in Optics in Computing 1998, P. Chavel, D. Miller, H. Thienpont, eds., Proc. SPIE3490, 541–545 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited