OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 26 — Sep. 10, 1999
  • pp: 5662–5665

Site-selective hole burning in Eu3+:Y2SiO5

Ranjit S. Pandher, Andre Jackson, Angela Davis, and B. Rami Reddy  »View Author Affiliations


Applied Optics, Vol. 38, Issue 26, pp. 5662-5665 (1999)
http://dx.doi.org/10.1364/AO.38.005662


View Full Text Article

Acrobat PDF (95 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We found that the Eu3+ ion occupies several distinct sites in Y2SiO5. We were also able to perform hole-burning studies in more than 40 different transitions.

© 1999 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(210.4680) Optical data storage : Optical memories
(210.4810) Optical data storage : Optical storage-recording materials
(250.5230) Optoelectronics : Photoluminescence
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6460) Spectroscopy : Spectroscopy, saturation

History
Original Manuscript: November 20, 1998
Revised Manuscript: April 20, 1999
Published: September 10, 1999

Citation
Ranjit S. Pandher, Andre Jackson, Angela Davis, and B. Rami Reddy, "Site-selective hole burning in Eu3+:Y2SiO5," Appl. Opt. 38, 5662-5665 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-26-5662


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, New York, 1988).
  2. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996). [CrossRef]
  3. K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997). [CrossRef]
  4. R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982). [CrossRef]
  5. R. Yano, M. Mitsunaga, N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1886 (1991). [CrossRef] [PubMed]
  6. M. Mitsunaga, R. Yano, N. Uesugi, “Time- and frequency-domain hybrid optical memory: 1.6-kbit data storage in Eu3+:Y2SiO5,” Opt. Lett. 16, 1890–1893 (1991). [CrossRef] [PubMed]
  7. X. A. Shen, R. Kachru, “7F0–5D1 Transition in Eu3+:Y2SiO5,” J. Opt. Soc. Am. B 11, 591–596 (1994). [CrossRef]
  8. R. Yano, M. Mitsunaga, N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its applications to time domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992). [CrossRef]
  9. L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981). [CrossRef]
  10. R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983). [CrossRef]
  11. A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986). [CrossRef]
  12. N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995). [CrossRef]
  13. M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998). [CrossRef]
  14. R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988). [CrossRef]
  15. A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969). [CrossRef]
  16. A. L. Schawlow, “Width and positions of sharp optical lines,” in Advances in Quantum Electronics III, P. Grivet, N. Bloembergen, eds. (Columbia U. Press, New York, 1963), pp. 645–653.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited