OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5679–5691

Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances

Marco Matricardi and Roger Saunders  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5679-5691 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fast radiative transfer model has been developed for prelaunch simulation studies of Infrared Atmospheric Sounding Interferometer (IASI) data and for the exploitation of IASI radiances within the framework of a numerical weather prediction variational analysis scheme. The model uses profile-dependent predictors to parameterize the atmospheric optical depths and is fast enough to cope with the processing of observations in near real time and with the several thousands of transmittance calculations required to simulate radiances from a full range of atmospheric conditions. The development of the model has involved the selection of a training set of atmospheric profiles, the production of a line-by-line transmittance database, the selection of optimal predictors for the gases considered in the study, and the production of regression coefficients for the fast transmittance scheme. The model fit to the line-by-line radiances shows that it can reproduce the line-by-line radiances to a degree of accuracy that is at or below the instrumental noise.

© 1999 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer

Original Manuscript: December 9, 1998
Revised Manuscript: July 6, 1999
Published: September 20, 1999

Marco Matricardi and Roger Saunders, "Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances," Appl. Opt. 38, 5679-5691 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. GEWEX Science Plan, WMO document (World Meteorological Organisation, Geneva, 1990).
  2. W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Mark, L. M. McMillin, “The TIROS-N Operational Vertical Sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).
  3. J. R. Eyre, G. A. Kelly, A. P. McNally, E. Anderson, A. Persson, “Assimilation of TOVS radiance information through one-dimensional variational analysis,” Q.J.R. Meteorol. Soc. 119, 1427–1463 (1993). [CrossRef]
  4. F. Rabier, J. Thépaut, P. Courtier, “Extended assimilation and forecast experiments with a four dimensional variational assimilation system,” Q.J.R. Meteorol. Soc. 124, 1861–1887 (1998). [CrossRef]
  5. R. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q.J.R. Meteorol. Soc. 125, 1407–1425 (1999).
  6. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittances of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995). [CrossRef] [PubMed]
  7. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995). [CrossRef] [PubMed]
  8. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” (European Centre for Medium-Range Weather Forecasts, Reading, UK, 1991).
  9. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford University, New York, 1995).
  10. K. Masuda, T. Takashima, T. Takayama, “Emissivity of pure sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988). [CrossRef]
  11. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  12. D. Friedman, “Infrared characteristics of ocean water (1.5–15 µm),” Appl. Opt. 8, 2073–2078 (1969). [CrossRef] [PubMed]
  13. L. M. McMillin, H. E. Fleming, “Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres,” Appl. Opt. 15, 358–363 (1976). [CrossRef] [PubMed]
  14. H. E. Fleming, L. M. McMillin, “Atmospheric transmittance of an absorbing gas. 2. A computationally fast and accurate transmittance model for slant paths at different zenith angles,” Appl. Opt. 16, 1366–1370 (1977). [CrossRef] [PubMed]
  15. L. M. McMillin, H. E. Fleming, M. L. Hill, “Atmospheric transmittances of an absorbing gas. 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios,” Appl. Opt. 18, 1600–1606 (1979). [CrossRef] [PubMed]
  16. J. Susskind, J. Rosenfeld, D. Reuter, “An accurate radiative transfer model for use in the direct physical inversion of HIRS2 and MSU temperature sounding data,” J. Geophys. Res. 88, 8550–8568 (1983). [CrossRef]
  17. J. R. Eyre, H. M. Woolf, “Transmittance of atmospheric gases in the microwave region: a fast model,” Appl. Opt. 27, 3244–3249 (1988). [CrossRef] [PubMed]
  18. P. J. Rayer, “Fast transmittance model for satellite sounding,” Appl. Opt. 34, 7387–7394 (1995). [CrossRef] [PubMed]
  19. S. E. Hannon, L. L. Strow, W. W. McMillan, “Atmospheric infrared fast transmittance models: a comparison of two approaches,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays, J. Wang, eds., Proc. SPIE2830, 94–105 (1996). [CrossRef]
  20. A. Chedin, N. A. Scott, C. Wahiche, P. Moulnier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985). [CrossRef]
  21. R. Rizzi, Dipartimento di Fisica Universita’ di Bologna, Bologna, Italy (personal communication, 1996).
  22. S. J. Evans, Imperial College, London, UK (personal communication, 1997).
  23. J. E. Harries, J. M. Russel, A. F. Tuck, L. L. Gordley, P. Purcell, K. Stone, R. M. Bevilacqua, M. Gunson, G. Nedoluha, W. A. Traub, “Validation of measurements of water vapour from the Halogen Occultation Experiment (HALOE),” J. Geophys. Res. 101, 10,205–10,216 (1996). [CrossRef]
  24. D. P. Edwards, “GENLN2. A general line-by-line atmospheric transmittance and radiance model,” (National Center for Atmospheric Research, Boulder, Colo., 1992).
  25. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  26. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 66–88 (1967). [CrossRef]
  27. L. L. Strow, D. C. Tobin, S. E. Hannon, “A compilation of first-order line-mixing coefficients for CO2 Q-branches,” J. Quant. Spectrosc. Radiat. Transfer 52, 281–294 (1994). [CrossRef]
  28. S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical line shape for H2O vapour: application to the continuum,” in Atmospheric Water Vapour, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 25–46. [CrossRef]
  29. S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  30. S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric spectral transmission and radiance: FASCOD1B,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 152–166 (1981). [CrossRef]
  31. V. Menoux, R. Le Doucen, C. Boulet, A. Roblin, A. M. Bouchardy, “Collision-induced absorption in the fundamental band of N2: temperature dependence of the absorption for N2–N2 and N2–O2 pairs,” Appl. Opt. 32, 263–268 (1993). [CrossRef] [PubMed]
  32. Y. M. Timofeyev, M. V. Tonkov, “Effect of the induced oxygen absorption band on the transformation of radiation in the 6 µm region of the Earth’s atmosphere,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 14, 437–441 (1978).
  33. C. P. Rinsland, J. S. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. 94, 16,303–16,322 (1989). [CrossRef]
  34. D. Schimel, D. Alves, I. Enting, M. Heiman, F. Joos, D. Raynaud, T. Wigley, M. Prather, R. Derwent, D. Ehalt, P. Fraser, E. Sanhueza, X. Zhou, P. Jonas, R. Charlson, H. Rodhe, S. Sadasivan, K. P. Shine, Y. Fouquart, V. Ramaswamy, S. Solomon, J. Srinivasan, D. Albritton, R. Derwent, I. Isaksen, M. Lal, D. Wuebbles, “Radiative forcing of climate change,” in Climate Change 1995: the Science of Climate Change, J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, eds. (Cambridge University, Cambridge, UK, 1996), pp. 69–131.
  35. F. Cayla, “Simulation of IASI spectra,” (Centre National D’ Etudes Spatiales, Toulouse, France, 1996).
  36. E. O. Brigham, Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  37. L. L. Strow, University of Maryland, Baltimore County 1000 Hilltop Circle, Baltimore, Md. 21250 (personal communication, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited