OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5752–5760

Power-scalable system of phase-locked single-mode diode lasers

Lars Bartelt-Berger, Uwe Brauch, Adolf Giesen, Helmut Huegel, and Hans Opower  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5752-5760 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The direct use of diode lasers for high-power applications in material processing is limited to applications with relatively low beam quality and power density requirements. To achieve high beam quality one must use single-mode diode lasers, however with the drawback of relatively low optical output powers from these components. To realize a high-power system while conserving the high beam quality of the individual emitters requires coherent coupling of the emitters. Such a power-scalable system consisting of 19 slave lasers that are injection locked by one master laser has been built and investigated, with low-power diode lasers used for system demonstration. The optical power of the 19 injection-locked lasers is coupled into polarization-maintaining single-mode fibers and geometrically superimposed by a lens array and a focusing lens. The phase of each emitter is controlled by a simple electronic phase-control loop. The coherence of each slave laser is stabilized by computer control of the laser current and guarantees a stable degree of coherence of the whole system of 0.7. An enhancement factor of 13.2 in peak power density compared with that which was achievable with the incoherent superposition of the diode lasers was observed.

© 1999 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3520) Lasers and laser optics : Lasers, injection-locked

Original Manuscript: February 16, 1999
Revised Manuscript: June 3, 1999
Published: September 20, 1999

Lars Bartelt-Berger, Uwe Brauch, Adolf Giesen, Helmut Huegel, and Hans Opower, "Power-scalable system of phase-locked single-mode diode lasers," Appl. Opt. 38, 5752-5760 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. O’Brien, A. Schoenfelder, R. J. Lang, “5-W cw diffraction-limited in-GaAs broad-area flared amplifier at 970 nm,” IEEE Photonics Technol. Lett. 9, 1217–1219 (1997). [CrossRef]
  2. M. Lurie, “Coherence and its effect on laser arrays,” in Surface Emitting Semiconductor Lasers and Arrays, G. A. Evans, ed. (Academic, Boston, Mass., 1993), pp. 435–443.
  3. G. L. Schuster, J. R. Andrews, “Coherent beam combining: optical loss effects on power scaling,” Appl. Opt. 34, 6801–6805 (1995). [CrossRef] [PubMed]
  4. D. Botez, “Monolithic phase-locked semiconductor laser arrays,” in Diode Laser Arrays, D. Botez, D. R. Scifres, eds. (Cambridge U. Press, Cambridge, 1994), pp. 1–67. [CrossRef]
  5. J. C. Ehlert, B. Cassarly, S. H. Chakmakjian, J. M. Finlan, K. M. Flood, R. G. Waarts, D. Nam, D. F. Welch, “Automated phase sensing and control of an external Talbot cavity laser with phase-contrast imaging,” Appl. Opt. 33, 5550–5556 (1994). [CrossRef] [PubMed]
  6. J. S. Osinski, D. Mehuys, D. F. Welch, R. G. Waarts, J. S. Major, K. M. Dzurko, R. J. Lang, “Phased array of high-power coherent, monolithic flared amplifier master oscillator power amplifiers,” Appl. Phys. Lett. 66, 556–558 (1995). [CrossRef]
  7. J. Levy, K. Roh, “Coherent array of 900 semiconductor laser amplifiers,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 58–69 (1995). [CrossRef]
  8. W. Wang, K. Nakagawa, S. Sayama, M. Ohtusu, “Coherent addition of injection-locked high-power AlGaAs diode lasers,” Opt. Lett. 17, 1593–1595 (1992). [CrossRef] [PubMed]
  9. L. Berger, U. Brauch, A. Giesen, H. Hügel, H. Opower, M. Schubert, K. Wittig, “Coherent fiber coupling of laser diodes,” in Laser Diodes and Applications II, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2682, 39–46 (1996). [CrossRef]
  10. R. J. Lang, A. Hardy, R. Parke, D. Mehuys, S. O’Brien, J. Major, D. Welch, “Numerical analysis of flared semiconductor laser amplifiers,” IEEE J. Quantum Electron. 29, 2044–2051 (1993). [CrossRef]
  11. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982). [CrossRef]
  12. M. Pessa, J. Nappi, P. Savolainen, A. Ovtchinnikov, M. Toivonen, R. F. Murison, H. M. Asonen, “State-of-the-art aluminum-free 980-nm laser diodes,” in Laser Diodes and Applications II, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2682, 161–168 (1996). [CrossRef]
  13. A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986), p. 1134.
  14. D. E. N. Davies, S. Kingsley, “Method of phase-modulating signals in optical fibers: application to optical-telemetry systems,” Electron. Lett. 10, 21–22 (1974). [CrossRef]
  15. S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 17, 681–689 (1981). [CrossRef]
  16. M. Tempus, W. Lüthy, H. P. Weber, “Coherent recombination of laser beams with interferometrical phase control,” Appl. Phys. B 56, 79–83 (1993). [CrossRef]
  17. W. M. Neubert, K. H. Kudielka, W. R. Leeb, A. L. Scholz, “Experimental demonstration of an optical phased array antenna for laser space communications,” Appl. Opt. 33, 3820–3830 (1994). [CrossRef] [PubMed]
  18. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987), p. 503.
  19. B. R. Frieden, “Lossless conversion of a plane laser wave to a plane wave of uniform irradiance,” Appl. Opt. 4, 1400–1403 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited