OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5803–5815

Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals

Pawel Kluczynski and Ove Axner  »View Author Affiliations


Applied Optics, Vol. 38, Issue 27, pp. 5803-5815 (1999)
http://dx.doi.org/10.1364/AO.38.005803


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical description of the wavelength-modulation (WM) spectrometry technique is given. The formalism is based on Fourier analysis and can therefore correctly handle arbitrary large frequency-modulation amplitudes. It can also deal with associated intensity modulations as well as wavelength-dependent transmission effects. It elucidates clearly how various Fourier components of these entities combine with those of the line-shape function to yield separately the final analytical and background nf WM signals. Explicit expressions are given for the 2f and the 4f signals. It is shown, among other things, that the 4f technique in general gives rise to smaller background signals (and therefore larger signal-to-background ratios) than does the 2f technique when the background is dominated by etalon effects from short cavities and that a finite intensity modulation necessarily leads to an out-of-phase nf WM signal. The formalism is also able to elucidate clearly that a linear intensity modulation is not sufficient to cause any 2f background residual–amplitude–modulation signals (as was the general consensus until recently in the literature) but that 2f background signals instead can exist only in systems with either wavelength-dependent transmission or a laser with nonlinear intensity modulation.

© 1999 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: December 8, 1998
Revised Manuscript: May 21, 1999
Published: September 20, 1999

Citation
Pawel Kluczynski and Ove Axner, "Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals," Appl. Opt. 38, 5803-5815 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-27-5803

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited