OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5816–5837

Methodology for the independent calibration of Raman backscatter water-vapor lidar systems

Vanessa Sherlock, Alain Hauchecorne, and Jacqueline Lenoble  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5816-5837 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for the independent calibration of Raman backscatter water-vapor lidar systems. Particular attention is given to the resolution of instrumental changes in the short and the long terms. The method reposes on the decomposition of the instrument function, which allows the lidar calibration coefficient to be re-expressed as the product of two terms, one describing the instrumental transmission and detection efficiency and the other describing the wavelength-dependent convolution of the Raman backscatter cross sections with the instrument function. The origins of changes in instrument response necessitate the experimental determination of the system detection efficiency. Two external light sources for calibration are assessed: zenith observation of diffuse sunlight and a xenon arc lamp. The results favor use of the diffuse-sunlight measurement but highlight the need for simultaneous sunphotometer measurements to constrain modeled aerosol optical properties. Quantum mechanical models of the Raman cross sections are described, and errors in determining the cross sections and their convolution with the instrument function are discussed in detail. The calibration coefficients deduced by using the independent method are compared with coefficients deduced from Vaisala H-Humicap radiosonde measurements. These results agree to within current calibration errors (15%, unconstrained aerosol parameters), and a change in calibration coefficient following instrument modification is reproduced satisfactorily. Results from modeling and intercomparison studies are extended to estimate the calibration accuracy and the precision of the diffuse-sunlight method with constrained modeled aerosol parameters. Changes in the calibration coefficient in the short and the long terms should be resolved to 4(6)% and 6(9)%, respectively, which is comparable or better than the precision of existing dependent methods of calibration. The reduction of the absolute calibration error remains an outstanding issue for all calibration methods.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman

Original Manuscript: December 16, 1998
Revised Manuscript: May 19, 1999
Published: September 20, 1999

Vanessa Sherlock, Alain Hauchecorne, and Jacqueline Lenoble, "Methodology for the independent calibration of Raman backscatter water-vapor lidar systems," Appl. Opt. 38, 5816-5837 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  2. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995). [CrossRef]
  3. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  4. D. D. Turner, J. E. M. Goldsmith, “24-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. (to be published).
  5. J. Nash, F. J. Schmidlin, “Instruments and observing methods. Report 30. WMO International Radiosonde Intercomparison UK 1984, USA 1985,” (World Meteorological Organization, Case postale 2300, Geneva, 1987).
  6. F. J. Schmidlin, “Report of the WMO radiosonde relative humidity sensor intercomparison: Phase 2, 8-26 September 1995,” (World Meteorological Organization, Case postale 2300, Geneva, 1999).
  7. B. J. Soden, J. R. Lanzante, “An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor,” J. Clim. 9, 1235–1250 (1996). [CrossRef]
  8. B. M. Lesht, J. C. Lilegren, “Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great Plains CART site,” in Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio Tex. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1996), pp. 165–168.
  9. P. S. Anderson, “Mechanism for the behavior of hydroactive materials used in humidity sensors,” J. Atmos. Oceanic Technol. 12, 662–667 (1995). [CrossRef]
  10. S. Muller, P. J. Beekman, “A test of commercial humidity sensors for use at automatic weather stations,” J. Atmos. Oceanic Technol. 4, 731–735 (1987). [CrossRef]
  11. D. Kley, H. G. J. Smit, H. Vomel, V. Ramanathan, P. J. Crutzen, S. Williams, J. Mey-werk, S. J. Oltmans, “Tropospheric water vapor and ozone cross sections in a zonal plane over the central equatorial Pacific,” Q. J. R. Meteorol. Soc. 123, 2009–2040 (1997). [CrossRef]
  12. P. Yang, H. Grassl, H. Jager, “An improved humidity sensor,” J. Atmos. Oceanic Technol. 13, 1110–1115 (1996). [CrossRef]
  13. H. E. Revercomb, W. F. Feltz, R. O. Knuteson, D. C. Tobin, P. F. W. van Delst, B. A. Whitney, “Accomplishments of the water vapor IOP’s: an overview,” in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson Ariz. (Office of Energy Research, Environmental Sciences Division, U.S. Department of Energy, Washington, D.C. 20585, 1998), pp. 639–645.
  14. “The Global Energy and Water Cycle Experiment (GEWEX),” World Meteorol. Organ. Bull. 42, 20–27 (1993).
  15. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988). [CrossRef]
  16. C. M. Penney, M. Lapp, “Raman scattering cross section for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976). [CrossRef]
  17. C. M. Penney, L. M. Goldman, M. Lapp, “Raman scattering from flames,” Science 175, 1112–1115 (1972). [CrossRef] [PubMed]
  18. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993). [CrossRef]
  19. V. J. Sherlock, “Evaluation de la technique du lidar Raman en vue de l’étude climatologique de la vapeur d’eau dans la moyenne et haute troposphère,” Ph.D. dissertation (Université de Paris VI, Paris, 1998).
  20. V. J. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman backscatter lidar measurement of mid and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  21. J. M. Flaud, C. Camy-Peyret, “The 2ν2, ν1 and ν3 bands of H2O. Rotational study of the (000) and (020) states,” J. Mol. Phys. 26, 811–823 (1973). [CrossRef]
  22. J. M. Flaud, C. Camy-Peyret, “The interacting states (020), (100), and (001) of H216O,” J. Mol. Spectrosc. 51, 142–150 (1974). [CrossRef]
  23. R. Gaufrès, “Sur quelques possibilités offertes par la séparation de diffusion de trace en spectroscopic Raman des gaz,” C. R. Acad. Sci. Ser. B T227, 297–298 (1973).
  24. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν2 and 2ν2,” J. Mol. Phys. 33, 1701–1714 (1977). [CrossRef]
  25. L. A. Rahn, D. A. Greenhalgh, “High resolution inverse Raman spectroscopy of the ν1 band of water vapor,” J. Mol. Spectrosc. 119, 11–21 (1986). [CrossRef]
  26. W. F. Murphy, “Intensities of rotation and vibration–rotation Raman transitions in assymetric top molecules,” J. Raman Spectrosc. 11, 339–345 (1981). [CrossRef]
  27. W. F. Murphy, “The rovibrational Raman spectrum of water vapor ν1 and ν3,” J. Mol. Phys. 36, 727–732 (1978). [CrossRef]
  28. R. Gaufrès, S. Spourtouch, “Contours des bandes dans les spectres Raman de gaz,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 478–492.
  29. J. L. Bribes, R. Gaufrès, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28, 336–337 (1976). [CrossRef]
  30. G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Norstrand, Princeton, N.J., 1959).
  31. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  32. W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of prelaser data,” Appl. Spectrosc. 23, 211–218 (1969). [CrossRef]
  33. W. Holzer, Y. LeDuff, “The depolarization ratio of the Raman bands of the vibration of diatomic molecules,” in Advances in Raman Spectroscopy (Heyden, London, 1973), Vol. 1, pp. 109–114.
  34. H. Inaba, T. Kobayasi, “Laser-Raman Radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectron. 4, 101–123 (1972).
  35. N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978). [CrossRef]
  36. D. A. Greenhalgh, R. J. Hall, F. M. Porter, W. A. England, “Application of the rotational diffusion model to the CARS spectra of high-temperature high-pressure water vapor,” J. Raman Spectrosc. 15, 71–79 (1984). [CrossRef]
  37. G. C. Herring, B. W. South, “Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K,” J. Quant. Spectrosc. Radiat. Transfer 52, 835–840 (1994). [CrossRef]
  38. J. Wang, G. P. Anderson, H. E. Revercomb, R. O. Knuteson, “Validation of fascod3 and modtran3: comparison of model calculations with ground based and airborne interferometer measurements under clear sky conditions,” Appl. Opt. 35, 6028–6040 (1996). [CrossRef] [PubMed]
  39. J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).
  40. G. A. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols Global Climatology and Radiative Characteristics (A. Deepak, Hampton, Va., 1991).
  41. B. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowaik, “Automatic sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ. 66, 1–16 (1998). [CrossRef]
  42. M. Weller, U. Leiterer, “Experimental data on spectral aerosol optical thickness and its global distribution,” Beitr. Phys. Atmos. 61, 1–9 (1988).
  43. Y. J. Kaufman, A. Gitelson, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10,341–10,356 (1994). [CrossRef]
  44. J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the Stratospheric Aerosol and Gas Experiment II water vapor to radiosonde measurements,” J. Geophys. Res. 98, 4897–4917 (1993). [CrossRef]
  45. A. Heymsfield, National Center for Atmospheric Research, Boulder, Colo. (personal communication, July1998).
  46. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” (U.S. Air Force Geophysics Laboratories, Hanscom Air Force Base, Mass., 1972).
  47. M. Van Weele, T. J. Martin, M. Blumthaler, C. Brogniez, P. N. den Outer, O. Engelsen, J. Lenoble, B. Mayer, G. Pfister, A. Ruggaber, B. Walravens, P. Weihs, B. G. Gardiner, D. Gillotay, D. Haferl, A. Kylling, G. Seckmeyer, W. M. F. Wauben, “From model intercomparison toward benchmark UV spectra for real atmospheric cases,” J. Geophys. Res. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited