OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5859–5866

Fabry–Perot etalon aperture requirements for direct detection Doppler wind lidar from Earth orbit

Jack A. McKay  »View Author Affiliations


Applied Optics, Vol. 38, Issue 27, pp. 5859-5866 (1999)
http://dx.doi.org/10.1364/AO.38.005859


View Full Text Article

Enhanced HTML    Acrobat PDF (107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of Fabry–Perot etalons for direct detection Doppler wind lidar from a satellite is considered for two direct detection methods, fringe imaging (multichannel) and double edge. The area solid-angle product of the etalon for each technique is derived and shown to be inherently larger, for a given etalon aperture, for the fringe imager than for the double-edge Doppler analyzer. Modeling of the Doppler measurement accuracy of a spaceflight direct detection wind lidar shows that a very large optical aperture, 2 m or more, is necessary. Optical throughput matching to a 2-m collector requires, for the fringe-imaging Doppler analyzer, an etalon with 60 mm aperture, whereas the double-edge technique would require two etalons of 200 mm aperture, or a split-aperture etalon of 400 mm working aperture. Because the two direct detection methods have been shown to have practically identical intrinsic sensitivities (measurement accuracies per unit signal), this difference in etalon dimensions may be a significant selection consideration.

© 1999 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: January 11, 1999
Revised Manuscript: May 21, 1999
Published: September 20, 1999

Citation
Jack A. McKay, "Fabry–Perot etalon aperture requirements for direct detection Doppler wind lidar from Earth orbit," Appl. Opt. 38, 5859-5866 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-27-5859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979). [CrossRef] [PubMed]
  2. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995). [CrossRef]
  3. W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994). [CrossRef]
  4. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989). [CrossRef]
  5. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992). [CrossRef] [PubMed]
  6. M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998). [CrossRef]
  7. J. A. McKay, “Modeling of direct detection Doppler wind lidar: I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998). [CrossRef]
  8. J. A. McKay, “Modeling of direct detection Doppler wind lidar: II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998). [CrossRef]
  9. J. A. McKay, “Direct detection Doppler wind lidar for spaceflight,” in Proceedings of the 19th International Laser Radar Conference, Conference Publication 1998-207671 (NASA Scientific and Technical Information Program Office, Hanover, Md., 1998), Part 2, pp. 595–599.
  10. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994). [CrossRef] [PubMed]
  11. C. L. Wyatt, Radiometric System Design (Macmillan, New York, 1987), Sect. 3.2.4.
  12. D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilised piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1325 (1981). [CrossRef]
  13. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  14. J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974). [CrossRef]
  15. C. Flesia, C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999). [CrossRef]
  16. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992). [CrossRef]
  17. M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994). [CrossRef]
  18. “Definition and preliminary design of the laser atmospheric wind sounder (LAWS),” (GE Astro Space Co., P.O. Box 800, Princeton N.J. 08540, 1992).
  19. “Global wind profiles,” (National Oceanic and Atmospheric Administration, 1305 East West Highway, Silver Spring Md. 20910, 1998).
  20. “Unaccommodated environmental data records: technology status and promising technological areas” (National Polar-orbiting Operational Environmental Satellite System Integrated Program Office, Silver Spring, Md. 20910, 1996).
  21. A. Stoffelen, G.-J. Marseille, “Study on the utility of a Doppler wind lidar for numerical weather prediction and climate,” , Royal Netherlands Meteorological Institute (KNMI), pub., 3730 AE De Bilt, The Netherlands (1998).
  22. M. S. Lake, J. E. Phelps, J. E. Dyer, D. A. Caudle, A. Tam, J. Escobedo, E. P. Kasl, “A deployable primary mirror for space telescopes,” in Advanced Telescope Design, Fabrication, and Control, B. Roybal, ed., Proc. SPIE3785, (1999). [CrossRef]
  23. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990). [CrossRef] [PubMed]
  24. M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997). [CrossRef]
  25. G. D. Emmitt, J. Spinhirne, R. Menzies, D. Winker, D. Bowdle, “Target atmospheres for use in DWL concept studies,” 4th draft, February1998. This can be found at http://cyclone.swa.com/LidarProducts/targetAtm/ .
  26. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited