OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5867–5879

Laser-induced incandescence applied to metal nanostructures

Randall L. Vander Wal, Thomas M. Ticich, and Joseph R. West, Jr.  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5867-5879 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced incandescence is both characterized and demonstrated for the measurement of metal nanoparticle concentration. Reported are the results of an initial characterization of the spectral and temporal signature of the laser-induced incandescence as a function of the excitation laser fluence and wavelength. Validation of the incandescence as a measure of the concentration is demonstrated by absorption measurements. Fluence dependence measurements are also presented. Double-pulse measurements determine the fluence for the onset of vaporization-induced mass loss. Comparisons between the present observations and those for carbon nanostructures are also made. Metals tested include (in order of increasing vaporization temperature) Fe, Ti, Mo, and W.

© 1999 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2490) Remote sensing and sensors : Flow diagnostics
(290.2200) Scattering : Extinction
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Original Manuscript: January 13, 1999
Revised Manuscript: May 12, 1999
Published: September 20, 1999

Randall L. Vander Wal, Thomas M. Ticich, and Joseph R. West, "Laser-induced incandescence applied to metal nanostructures," Appl. Opt. 38, 5867-5879 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Dorman, ed., Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992).
  2. M. Adelt, S. Nepijko, W. Drachsel, H.-J. Freund, “Size-dependent luminescence of small palladium particles,” Chem. Phys. Lett. 291, 425–432 (1998). [CrossRef]
  3. S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of ultrafine particles by gas evaporation technique. I. Aluminum in helium,” Jpn. J. Appl. Phys. 12, 1675–1684 (1973). [CrossRef]
  4. T. C. Pluym, Q. H. Powell, A. S. Gurav, T. L. Ward, T. T. Kodas, L. M. Wang, H. D. Glicksman, “Solid silver particle production by spray pyrolysis,” J. Aerosol Sci. 24, 383–392 (1993). [CrossRef]
  5. V. Haas, R. Birringer, H. Gleiter, S. E. Pratsinis, “Synthesis of nanostructured powders in an aerosol flow condenser,” J. Aerosol Sci. 28, 1443–1453 (1997). [CrossRef]
  6. J. I. Vovchuk, N. I. Polataev, “The temperature field of a laminar diffusion dust flame,” Combust. Flame 99, 706–712 (1994). [CrossRef]
  7. A. J. Tulis, J. R. Selman, “Detonation tube studies of aluminum particles dispersed in air,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1982), pp. 655–663. [CrossRef]
  8. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  9. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  10. H. Chang, W. Y. Lin, P. Biswas, “An inversion technique to determine the aerosol size distribution in multicomponent systems from in-situ light scattering measurements,” Aerosol. Sci. Technol. 22, 24–32 (1995). [CrossRef]
  11. N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993). [CrossRef]
  12. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994). [CrossRef] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  14. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  15. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  16. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Technical Paper 910224 (Society of Automotive Engineers, Warrensdale, Pa., 1991).
  17. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284. [CrossRef]
  18. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396. [CrossRef]
  19. K. R. McManus, M. G. Allen, W. T. Rawlins, “Quantitative detection and imaging of soot particles by laser induced incandescence,” paper AIAA-97-0117, presented at the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–10 January 1997 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1997).
  20. National Institute of Standards Atomic Spectroscopy Database, Version 1.1 (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  21. R. A. Dobbins, C. M. Megardis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987). [CrossRef]
  22. G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995). [CrossRef]
  23. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975). [CrossRef]
  24. T. L. Thiem, Y.-I. Lee, J. Sneddon, “Lasers in atomic spectrometry: selected applications,” Microchem. J. 45, 1–35 (1992). [CrossRef]
  25. C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  26. P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995). [CrossRef]
  27. X. L. Mao, M. A. Shannon, A. J. Fernandez, R. E. Russo, “Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy,” Appl. Spectrosc. 49, 1054–1062 (1995). [CrossRef]
  28. L. Brus, “Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon,” J. Phys. Chem. 98, 3575–3581 (1994). [CrossRef]
  29. P. M. Fauchet, “Photoluminescence and electroluminescence from porous silicon,” J. Lumin. 70, 294–309 (1996). [CrossRef]
  30. M. Cardona, G. Guntherodt, eds., Light Scattering in Solids IV, Electronic Scattering, Spin Effects, SERS, and Morphic Effects (Springer-Verlag, Heidelberg, 1984). [CrossRef]
  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer-Verlag, Heidelberg, 1995). [CrossRef]
  32. G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
  33. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996).
  34. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  35. P. Roth, A. V. Filippov, “In-situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996). [CrossRef]
  36. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997). [CrossRef] [PubMed]
  37. L. A. Melton, “Soot diagnostics based on laser-heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef]
  38. D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Technical Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).
  39. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977). [CrossRef]
  40. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  41. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998). [CrossRef]
  42. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–559 (1973). [CrossRef]
  43. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984). [CrossRef] [PubMed]
  44. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1998). [CrossRef]
  45. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited