OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 27 — Sep. 20, 1999
  • pp: 5880–5886

Thermal luminescence sensor for ground-path contamination detection

Arthur H. Carrieri, Irving F. Barditch, David J. Owens, Erik S. Roese, Pascal I. Lim, and Michael V. Talbard  »View Author Affiliations

Applied Optics, Vol. 38, Issue 27, pp. 5880-5886 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A standoff method of detecting liquids on terrestrial and synthetic landscapes is presented. The interstitial liquid layers are identified through their unique molecular vibration modes in the 7.14–14.29-µm middle infrared (fingerprint) region of liberated thermal luminescence. Several seconds of 2.45-GHz beam exposure at 1.5 W cm-1 is sufficient for detecting polydimethyl siloxane lightly wetting the soil through its fundamental Si–CH3 and Si–O–Si stretching modes in the fingerprint region. A detection window of thermal opportunity opens as the surface attains maximum thermal gradient following irradiation by the microwave beam. The contaminant is revealed inside this window by means of a simple difference-spectrum measurement. Our goal is to reduce the time needed for optimum detection of the contaminant’s thermal spectrum to a subsecond exposure from a limited intensity beam.

© 1999 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.5010) Fourier optics and signal processing : Pattern recognition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: February 5, 1999
Revised Manuscript: June 16, 1999
Published: September 20, 1999

Arthur H. Carrieri, Irving F. Barditch, David J. Owens, Erik S. Roese, Pascal I. Lim, and Michael V. Talbard, "Thermal luminescence sensor for ground-path contamination detection," Appl. Opt. 38, 5880-5886 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. L. Henderson, M. F. Baumgardner, D. P. Franzmeier, D. E. Stott, D. C. Coster, “High dimensional reflectance analysis of soil organic matter,” Soil Sci. Soc. Am. J. 53, 865–872 (1992). [CrossRef]
  2. M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11,767–11,775 (1990). [CrossRef]
  3. R. M. Narayanan, S. E. Green, D. R. Alexander, “Midinfrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993). [CrossRef] [PubMed]
  4. W. C. Snyder, W. Zhengming, “Surface temperature correction for active infrared reflectance measurements of natural materials,” Appl. Opt. 35, 2216–2220 (1996). [CrossRef] [PubMed]
  5. J. L. Thomson, J. W. Salisbury, “Midinfrared reflectance of mineral mixtures (7–14 µm),” Remote Sens. Environ. 45(1), 1–13 (1993). [CrossRef]
  6. A. B. Kahle, F. D. Palluconi, S. J. Hook, J. Realmuto, G. Bothwell, “The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER),” Int. J. Imaging Syst. Technol. 3(2), 144–156 (1991). [CrossRef]
  7. G. N. Pearson, M. Harris, D. V. Willetts, P. R. Tapster, P. J. Roberts, “Differential laser absorption and thermal emission for remote identification of opaque surface coatings,” Appl. Opt. 36, 2713–2720 (1997). [CrossRef] [PubMed]
  8. Z. L. Lee, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
  9. A. Hayden, “Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra,” Appl. Opt. 35, 2802–2809 (1996). [CrossRef] [PubMed]
  10. K. P. Gaikovich, “Stochastic theory of temperature distribution and thermal emission of half-space with random time-dependent surface temperature,” IEEE Trans. Geosc. Remote Sens. 34, 582–587 (1996). [CrossRef]
  11. M. G. Bulatov, Yu. A. Kravtsov, V. G. Pungin, E. I. Skvortsov, “Effect of rainfall on sea-surface microwave thermal emission,” Waves Random Media 8(1), 103–109 (1998). [CrossRef]
  12. D. Courtois, C. Thiebeaux, A. Delahaigue, J. C. Mouanda, “Thermal emission detection by laser heterodyne radiometry,” Opt. Laser Technol. 22(2), 131–135 (1990). [CrossRef]
  13. A. H. Carrieri, “Infrared detection of liquids on terrestrial surfaces by CO2 laser heating,” Appl. Opt. 29, 4907–4913 (1990). [CrossRef] [PubMed]
  14. S. M. Haugland, E. Z. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992). [CrossRef] [PubMed]
  15. A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998). [CrossRef]
  16. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759–3766 (1999). [CrossRef]
  17. A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited