OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 28 — Oct. 1, 1999
  • pp: 6010–6018

Design of a diluted aperture by use of the practical cutoff frequency

Jorge L. Flores, Gonzalo Paez, and Marija Strojnik  »View Author Affiliations

Applied Optics, Vol. 38, Issue 28, pp. 6010-6018 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the imaging performance of a number of diluted-aperture configurations, using the modulation transfer function. We select a single figure of merit, the practical cutoff frequency, rather than the traditional cutoff frequency, as the more useful frequency for the detection of details. Using this new parameter, we compare the performance of a number of published aperture configurations. On the basis of this analysis a new configuration is proposed for the Polar Stratospheric Telescope primary.

© 1999 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(110.4100) Imaging systems : Modulation transfer function
(110.6770) Imaging systems : Telescopes
(220.4830) Optical design and fabrication : Systems design

Original Manuscript: September 29, 1998
Revised Manuscript: May 4, 1999
Published: October 1, 1999

Jorge L. Flores, Gonzalo Paez, and Marija Strojnik, "Design of a diluted aperture by use of the practical cutoff frequency," Appl. Opt. 38, 6010-6018 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Scholl, G. N. Lawrence, “Diffraction modeling of a space relay experiment,” Opt. Eng. 29, 271–278 (1990). [CrossRef]
  2. M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correlation-feasibility study,” Appl. Opt. 34, 7295–7301 (1995). [CrossRef] [PubMed]
  3. P. Y. Bely, “NGST: a feasibility study of the Next Generation Space Telescope,” in Optical Telescopes of Today and Tomorrow: Following in the Direction of Tycho Brahe, A. Ardeberg, ed., Proc. SPIE2871, 800–805 (1996). [CrossRef]
  4. J. C. Mather, “The Cosmic Background Explorer (COBE) Mission,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 146–157 (1993). [CrossRef]
  5. M. F. Kessler, “Science with the infrared space observatory,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 2–8 (1993). [CrossRef]
  6. M. F. Kessler, “Infrared Space Observatory (ISO)—mission and spacecraft,” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 9–14 (1993). [CrossRef]
  7. D. Lemke, M. Anderegg, C. J. Cesarsky, P. E. Clegg, R. Emery, T. de Graauw, R. O. Katterloher, M. F. Kessler, H. Schapp, B. M. Swinyard, C. Tilger, L. Vigroux, J. Wolf, “Initial cold ground tests of the ISO satellite payload,” in Infrared Spaceborne Remote Sensing II, M. S. Scholl, ed., Proc. SPIE2268, 2–13 (1994). [CrossRef]
  8. A. N. Bunner, “Optical array for future astronomical telescopes in space,” in Infrared Adaptive and Synthetic Aperture Optical Systems, R. Johnson, W. Wolfe, J. Fender, eds., Proc. SPIE634, 180–188 (1986). [CrossRef]
  9. E. L. Dereniak, “Application of a synthetic aperture optical system to infrared image,” Appl. Opt. 12, 487–492 (1973). [CrossRef] [PubMed]
  10. H. S. Park, T. S. Axelrod, N. J. Colella, M. E. Colvin, A. G. Ledebuhr, “Realtime tracking system for the wide-field-of-view telescope project,” in Acquisition, Tracking, and Pointing III, S. Gowrinathan, ed., Proc. SPIE1111, 196–203 (1989). [CrossRef]
  11. M. S. Scholl, G. Garcia, “Two-beam laser for illumination for shape classification: feasibility study,” Rev. Mex. Fis. 43, 926–933 (1997).
  12. L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988). [CrossRef]
  13. M. S. Scholl, G. P. Padilla, Y. Wang, “Design of a high resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34, 3222–3228 (1995).
  14. C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O’Neil, C. E. Hines, “Wide field performance of a phased array telescope,” Opt. Eng. 34, 876–880 (1995). [CrossRef]
  15. J. E. Harvey, C. Ftaclas, “Field-of-view limitations of phased telescope arrays,” Appl. Opt. 34, 5787–5798 (1995). [CrossRef] [PubMed]
  16. M. S. Scholl, “Star field identification algorithm,” Opt. Lett. 18, 399–401 (1993). [CrossRef] [PubMed]
  17. M. S. Scholl, “Experimental demonstration of a star field identification algorithm,” Opt. Lett. 18, 402–404 (1993). [CrossRef] [PubMed]
  18. R. J. Spehalski, M. W. Werner, “Objectives for the space infrared telescope facility,” in Infrared Technology XVII, B. F. Andresen, M. Scholl, I. J. Spiro, eds., Proc. SPIE1540, 2–10 (1991). [CrossRef]
  19. M. S. Scholl, G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with rotationally-shearing interferometer,” Infrared Phys. Technol. (to be published).
  20. M. S. Scholl, G. P. Padilla, “Using the y, y-bar diagram to control stray light noise in the IR systems,” Infrared Phys. Technol. 38, 25–30 (1997). [CrossRef]
  21. M. S. Scholl, G. P. Padilla, “Imaging-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997). [CrossRef]
  22. J. E. Nelson, “Stressed mirror polishing. 2. Fabrication of an off-axis section of a paraboloid,” Appl. Opt. 19, 2341–2352 (1980). [CrossRef] [PubMed]
  23. O. Fähner, H. Brug, C. Laan, H. Frankena, “Generation of on axis and off-axis conic surfaces of revolution by applying a tubular tool,” Appl. Opt. 36, 4490–4496 (1997). [CrossRef]
  24. J. Zimmerman, “Computer controlled optical surfacing off-axis aspheric mirror,” in Advanced Technology Optical Telescopes IV, L. Barr, ed., Proc. SPIE1236, 663–668 (1990). [CrossRef]
  25. M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of 1999 OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 119–123.
  26. M. S. Scholl, Y. Wang, J. E. Randolph, J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30, 590–597 (1991). [CrossRef]
  27. S. M. Watson, J. P. Mills, “Two-point resolution criterion for multiaperture optical telescope,” J. Opt. Soc. Am. A 5, 893–903 (1988). [CrossRef]
  28. J. E. Harvey, R. A. Rockwell, “Performance characteristics of phase arrays and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988). [CrossRef]
  29. R. Barakat, “Diluted aperture diffraction and object reconstruction,” Opt. Eng. 29, 131–139 (1990). [CrossRef]
  30. J. Harvey, A. Kotha, R. Phillips, “Image characteristics in applications utilizing diluted subaperture arrays,” Appl. Opt. 2, 2983–2992 (1995). [CrossRef]
  31. R. R. Shannon, “Measures of image quality,” in Applied Optics and Optical Engineering, R. Kingslake, ed., (Academic, New York, 1970), Vol. III, pp. 184–187.
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1983), pp. 101–140.
  33. H. Ford, “A polar stratospheric telescope,” in Advanced Technology Optical Telescopes V, L. Stepp, ed., Proc. SPIE2199, 298–314 (1994). [CrossRef]
  34. Y. Wang, M. S. Scholl, “Experimental investigation of far-field diffraction by means of normally and non-normally illuminated elliptical apertures of wavelength dimension,” Opt. Eng. 33, 692–696 (1994). [CrossRef]
  35. A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction image,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, pp. 149–201. [CrossRef]
  36. M. J. E. Golay, “Point array having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971). [CrossRef]
  37. M. S. Scholl, “Rotating interferometer for detection and reconstruction of faint objects—simulation,” in Infrared Spaceborne Remote Sensing II, M. Scholl, ed., Proc. SPIE2268, 411–421 (1994). [CrossRef]
  38. F. Scott, D. Frauenhofer, “The modulation transfer function,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, eds. (Plenum, New York, 1971), pp. 291–306. [CrossRef]
  39. G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999). [CrossRef]
  40. G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–265 (1999). [CrossRef]
  41. H. Osterberg, “Resolving power test,” in Military Standardization Handbook, Optical Design, MIL-HDBK-141 (U.S. Government Printing Office, Washington, D.C., 1962), p. 26-5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited