OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 28 — Oct. 1, 1999
  • pp: 6075–6086

Hybrid Monte Carlo for Photon Transport through Optically Thick Scattering Media

Stéphane Chatigny, Michel Morin, Daniel Asselin, Yves Painchaud, and Pierre Beaudry  »View Author Affiliations

Applied Optics, Vol. 38, Issue 28, pp. 6075-6086 (1999)

View Full Text Article

Acrobat PDF (175 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Monte Carlo simulation code developed to model time-domain transillumination measurements with small-area detectors through an optically thick scattering slab is presented. A hybrid approach has been implemented to reduce calculation times. Most of the scattering slab is treated stochastically, albeit with variance reduction techniques and the isotropic diffusion similarity rule. The contribution to the output signal per unit area and time of photon packets propagating in a thin slice near the output face of the slab is calculated analytically after each propagation step. This approach drastically reduces the calculation time but produces spikes in the temporal signals.

© 1999 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.3830) Medical optics and biotechnology : Mammography
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media

Stéphane Chatigny, Michel Morin, Daniel Asselin, Yves Painchaud, and Pierre Beaudry, "Hybrid Monte Carlo for Photon Transport through Optically Thick Scattering Media," Appl. Opt. 38, 6075-6086 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. J. DePalma and J. Gasper, “Determining the properties of photographic emulsions by the Monte Carlo method,” Photogr. Sci. Eng. 16, 181–191 (1972).
  2. R. R. Meir, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
  3. L. R. Poole, B. B. Venable, and J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
  4. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. ten Bosch, “Scattering and absorption of turbid materials determined from reflection coefficients. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).
  5. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
  6. J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart, and M.-H. Bui, “A simulation method for the study of laser transillumination of biological tissues,” Ann. Biomed. Eng. 12, 281–304 (1984).
  7. J. M. Maarek, G. Jarry, J. Crowe, M.-H. Bui, and D. Laurent, “Simulation of laser tomoscopy in a heterogeneous biological medium,” Med. Bio. Eng. Comp. 24, 407–414 (1986).
  8. P. van der Zee and D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
  9. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
  10. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE, Bellingham, Wash., 1989), pp. 102–111.
  11. J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
  12. J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
  13. S. Avrillier, E. Tinet, and E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. France 51, 2521–2542 (1990).
  14. Y. Hasegawa, Y. Yamada, M. Tamura, and Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991).
  15. G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
  16. J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, and B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance and A. Katzir, eds., Proc. SPIE 1431, 30–41 (1991).
  17. H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Monte Carlo modelling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
  18. E. B. de Haller and C. Depeursinge, “Simulation of time-resolved breast transillumination,” Med. Bio. Eng. Comp. 31, 165–170 (1993).
  19. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
  20. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
  21. É. Tinet, L. Servant, F. Carmona, S. Avrillier, and J. P. Ollivier, “A fast and accurate new Monte Carlo simulation for light propagation through turbid media,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle and W. B. Miller, eds., Proc. SPIE 1968, 41–51 (1993).
  22. O. Schuetz, H.-E. Reinfelder, K. Klingenbeck-Regn, and H. Bartelt, “Monte Carlo modeling of time resolved near-infrared transillumination of human breast tissue,” in Quantification and Localization Using Diffused Photons in a Highly Scattering Medium, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, and V. V. Tuchin, eds., Proc. SPIE 2082, 123–129 (1994).
  23. A. Kienle, R. Hibst, and R. Steiner, “The use of neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE 2134, 364–371 (1994).
  24. P. Marquet, F. Bevilacqua, and C. Depeursinge, “Computing the light distribution in turbid media for different scattering and absorption coefficients from a single Monte Carlo simulation,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, and G. J. Mueller, eds., Proc. SPIE 2626, 17–24 (1995).
  25. É. Tinet, S. Avrillier, and J. M. Tualle, “Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
  26. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
  27. L. L. Carter and E. D. Cashwell, “Particle-transport simulations with the Monte-Carlo method,” TID-26607 (Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration, Oak Ridge, 1975).
  28. L. Servant, E. Tinet, S. Avrillier, and F. Carmona, “Similarity relations in multiple scattering through turbid media: a Monte Carlo evaluation,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle and W. B. Miller, eds., Proc. SPIE 1968, 154–162 (1993).
  29. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989).
  30. R. Graaff, J. G. Aarnoudse, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
  31. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
  32. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
  33. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited