OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 29 — Oct. 10, 1999
  • pp: 6141–6151

Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO3 crystals

Chao Ray Hsieh, Shiuan Huei Lin, Ken Y. Hsu, Tai Chiung Hsieh, Arthur Chiou, and John Hong  »View Author Affiliations


Applied Optics, Vol. 38, Issue 29, pp. 6141-6151 (1999)
http://dx.doi.org/10.1364/AO.38.006141


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze and compare two typical recording and thermal fixing procedures of a volume hologram in a Fe:LiNbO3 crystal (low–high–low procedure and high–low procedure). We consider the kinetics of the recording, compensating, and developing processes by taking into account the ratio of the conductivities between the protons and the electrons as a function of temperature. From the analysis the optimal environmental conditions (in terms of the fixing temperature and the compensation time) for each fixing procedure can be deduced for a crystal with given material parameters.

© 1999 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.7330) Holography : Volume gratings
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(210.2860) Optical data storage : Holographic and volume memories

History
Original Manuscript: February 10, 1999
Revised Manuscript: May 27, 1999
Published: October 10, 1999

Citation
Chao Ray Hsieh, Shiuan Huei Lin, Ken Y. Hsu, Tai Chiung Hsieh, Arthur Chiou, and John Hong, "Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO3 crystals," Appl. Opt. 38, 6141-6151 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-29-6141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  3. R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988). [CrossRef]
  4. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  5. V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  6. G. Montemezzani, P. Guter, “Thermal hologram fixing in pure and doped KNbO3 crystal,” J. Opt. Soc. Am. B 7, 2323–2328 (1990). [CrossRef]
  7. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996). [CrossRef] [PubMed]
  8. A. Mendez, L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998). [CrossRef]
  9. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3,” J. Opt. Soc. Am. B 15, 148–151 (1998). [CrossRef]
  10. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993). [CrossRef]
  11. A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991). [CrossRef]
  12. S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993). [CrossRef]
  13. H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981). [CrossRef]
  14. J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996). [CrossRef]
  15. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).
  16. M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993). [CrossRef]
  17. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, read-out, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995). [CrossRef] [PubMed]
  18. M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the thermal fixing and developing of holographic grating in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990). [CrossRef]
  19. J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967). [CrossRef]
  20. G. Montenmezzani, M. Zgonik, P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993). [CrossRef]
  21. B. Liu, L. Liu, L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170–2176 (1998). [CrossRef]
  22. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  23. C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited