OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 29 — Oct. 10, 1999
  • pp: 6159–6166

Three-dimensional color holographic display

Brian P. Ketchel, Christy A. Heid, Gary L. Wood, Mary J. Miller, Andrew G. Mott, Richard J. Anderson, and Gregory J. Salamo  »View Author Affiliations


Applied Optics, Vol. 38, Issue 29, pp. 6159-6166 (1999)
http://dx.doi.org/10.1364/AO.38.006159


View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3D) color holograms are recorded in a cerium-doped, strontium barium niobate (SBN:60) photorefractive crystal. These holograms are shown to reconstruct true color reproductions of the original object with an observable field of view of 37°. Angle multiplexing of two or more 3D color holograms is also demonstrated with angle tuning of the reference beam corresponding to a separation angle between stored images of 0.082°. Each of these results is compared with corresponding theoretical predictions.

© 1999 Optical Society of America

OCIS Codes
(090.2870) Holography : Holographic display
(090.4220) Holography : Multiplex holography
(100.6890) Image processing : Three-dimensional image processing
(190.5330) Nonlinear optics : Photorefractive optics

History
Original Manuscript: February 23, 1999
Revised Manuscript: June 18, 1999
Published: October 10, 1999

Citation
Brian P. Ketchel, Christy A. Heid, Gary L. Wood, Mary J. Miller, Andrew G. Mott, Richard J. Anderson, and Gregory J. Salamo, "Three-dimensional color holographic display," Appl. Opt. 38, 6159-6166 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-29-6159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997). [CrossRef]
  2. N. A. Vainos, M. C. Gower, “High-fidelity image amplification and phase conjugation in photorefractive Bi12SiO20 crystals,” Opt. Lett. 16, 363–365 (1991). [CrossRef] [PubMed]
  3. M. C. Bashaw, A. Aharoni, L. Hesselink, “Alleviation of image distortion due to striations in a photorefractive medium by using a phase-conjugated reference wave,” Opt. Lett. 17, 1149–1151 (1992);A. Aharoni, M. C. Bashaw, L. Hesselink, “Distortion-free multiplexed holography in striated photorefractive media,” Appl. Opt. 32, 1973–1982 (1993). [CrossRef] [PubMed]
  4. D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992). [CrossRef]
  5. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995). [CrossRef] [PubMed]
  6. N. A. Vainos, M. C. Gower, “High-fidelity phase conjugation and real-time orthoscopic three-dimensional image projection in BaTiO3,” J. Opt. Soc. Am. B 8, 2355–2362 (1991). [CrossRef]
  7. F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996). [CrossRef] [PubMed]
  8. L. E. Adams, R. S. Bondurant, “Wide-field-of-view heterodyne receiver using a photorefractive double phase-conjugate mirror,” Opt. Lett. 16, 832–834 (1991). [CrossRef] [PubMed]
  9. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 399–427. [CrossRef]
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  11. G. C. Valley, M. B. Kline, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983). [CrossRef]
  12. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986). [CrossRef]
  13. P. Yeh, T. Y. Chang, M. W. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B 5, 1743–1749 (1988); S. Weiss, O. Werner, B. Fischer, “Analysis of coupled photorefractive wave mixing junctions,” Opt. Lett. 14, 186–188 (1989), and references therein.
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 242–265.
  15. G. L. Wood, W. W. Clark, M. J. Miller, G. J. Salamo, E. J. Sharp, R. R. Neurgaonkar, J. R. Oliver, “Photorefractive materials,” in Spatial Light Modulator Technology: Materials, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 161–215.
  16. S. G. Odoulov, M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, P. Guenter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 5–43. [CrossRef]
  17. T. H. Jeong, E. Wesly, “Progress in true color holography,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 183–189 (1990). [CrossRef]
  18. PHOTO-PAINT 7 computer software (Corel Corporation) was used to compare the color composition of a hologram with the actual image of red and blue dice illuminated by laser light.
  19. S. V. Miridonov, A. V. Khomenko, D. Tentori, A. A. Kamshilin, “Information capacity of holograms in photorefractive crystals,” Opt. Lett. 19, 502–504 (1994). [CrossRef] [PubMed]
  20. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991);J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995);A. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, “Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media,” Opt. Lett. 18, 534–536 (1993). [CrossRef] [PubMed]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  22. J. Ma, T. Y. Chang, J. H. Hong, R. R. Neurgaonkar, G. Barbastathis, D. Psaltis, “Electrical fixing of 1000 angle-multiplexed holograms in SBN:75,” Opt. Lett. 22, 1116–1118 (1997). [CrossRef] [PubMed]
  23. J. J. Amodei, D. L. Stebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  24. D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990). [CrossRef] [PubMed]
  25. S. Campbell, P. Yeh, C. Gu, S. H. Lin, C.-J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited