OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 29 — Oct. 10, 1999
  • pp: 6176–6183

All-optical crossbar switch using wavelength division multiplexing and vertical-cavity surface-emitting lasers

Brian Webb and Ahmed Louri  »View Author Affiliations

Applied Optics, Vol. 38, Issue 29, pp. 6176-6183 (1999)

View Full Text Article

Acrobat PDF (478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design for an all-optical crossbar network utilizing wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) technology and a combination of free-space optics and compact optical waveguides is presented. Polymer waveguides route the optical signals from a spatially distributed array of processors to a central free-space optical crossbar, producing a passive, all-optical, fully connected crossbar network directly from processor to processor. The analyzed network could, relatively inexpensively, connect local clusters of tightly integrated processors. In addition, it is also believed that such a network could be extended, with wavelength reuse, to connect much larger numbers of processors in a multicluster network.

© 1999 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(090.1970) Holography : Diffractive optics
(140.3600) Lasers and laser optics : Lasers, tunable
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Brian Webb and Ahmed Louri, "All-optical crossbar switch using wavelength division multiplexing and vertical-cavity surface-emitting lasers," Appl. Opt. 38, 6176-6183 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
  2. R. A. Morgan, “Advances in vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE 2147, 97–119 (1994).
  3. J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1994), pp. 202–212.
  4. F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
  5. M. Larson, F. Sugihwo, A. Massengale, and J. S. Harris, Jr., “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.
  6. F. Sugihwo, M. Larson, C. C. Lin, W. Martin, and J. S. Harris, Jr., “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.
  7. F. Sugihwo, M. Larson, and J. S. Harris, Jr., “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.
  8. M. Y. Li, W. Yuen, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
  9. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
  10. L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, and P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
  11. P. Dowd, K. Bogineni, K. A. Aly, and J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
  12. K. M. Sivalingam and P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
  13. E. R. Hedin and F. J. Goetz, “Experimental studies of electro-optic polymer modulators and waveguides,” Appl. Opt. 34, 1554–1561 (1995).
  14. L. Robitaille, C. L. Callender, and J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
  15. Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, Jr., M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, and J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.
  16. L. A. Hornak, ed., Polymers For Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).
  17. A. Louri and R. Gupta, “Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 36, 430–442 (1997).
  18. A. Louri, B. Weech, and C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
  19. E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
  20. P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
  21. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
  22. H. Saito, I. Ogura, Y. Sugimoto, and K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
  23. Y. Li, T. Wang, and R. A. Linke, “VCSEL-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
  24. R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, and K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
  25. H.-J. J. Yeh and J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
  26. L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
  27. H. J. R. Dutton, Understanding Optical Communications (Prentice Hall, Upper Saddle River, N.J., 1998).
  28. M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  30. F. Timofeev, P. Bayvel, J. E. Midwinter, and M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
  31. T. V. Moui, “Receiver design for high-speed optical fiber systems,” IEEE J. Lightwave Technol. LT-2, 243–267 (1984).
  32. L. W. Shacklette, K. M. T. Stengel, C. Xu, and J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, and L. B. Stotts, eds., Proc. SPIE 2467, 107–117 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited