OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 29 — Oct. 10, 1999
  • pp: 6190–6200

Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors

Michael W. Haney, Marc P. Christensen, Predrag Milojkovic, Jeremy Ekman, Premanand Chandramani, Richard Rozier, Fouad Kiamilev, Yue Liu, and Mary Hibbs-Brenner  »View Author Affiliations


Applied Optics, Vol. 38, Issue 29, pp. 6190-6200 (1999)
http://dx.doi.org/10.1364/AO.38.006190


View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The experimental optical interconnection module of the Free-Space Accelerator for Switching Terabit Networks (FAST-Net) project is described and characterized. Four two-dimensional (2-D) arrays of monolithically integrated vertical-cavity surface-emitting lasers (VCSEL’s) and photodetectors (PD’s) were designed, fabricated, and incorporated into a folded optical system that links a 10 cm × 10 cm multichip smart pixel plane to itself in a global point-to-point pattern. The optical system effects a fully connected network in which each chip is connected to all others with a multichannel bidirectional data path. VCSEL’s and detectors are arranged in clusters on the chips with an interelement spacing of 140 µm. Calculations based on measurements of resolution and registration tolerances showed that the square 50-µm detector in a typical interchip link captures approximately 85% of incident light from its associated VCSEL. The measured optical transmission efficiency was 38%, with the losses primarily due to reflections at the surfaces of the multielement lenses, which were not antireflection coated for the VCSEL wavelength. The overall efficiency for this demonstration is therefore 32%. With the measured optical confinement, an optical system that is optimized for transmission at the VCSEL wavelength will achieve an overall efficiency of greater than 80%. These results suggest that, as high-density VCSEL-based smart pixel technology matures, the FAST-Net optical interconnection concept will provide a low-loss, compact, global interconnection approach for high bisection-bandwidth multiprocessor applications in switching, signal processing, and image processing.

© 1999 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: February 22, 1999
Revised Manuscript: June 30, 1999
Published: October 10, 1999

Citation
Michael W. Haney, Marc P. Christensen, Predrag Milojkovic, Jeremy Ekman, Premanand Chandramani, Richard Rozier, Fouad Kiamilev, Yue Liu, and Mary Hibbs-Brenner, "Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors," Appl. Opt. 38, 6190-6200 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-29-6190

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited