OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 29 — Oct. 10, 1999
  • pp: 6201–6204

Polarization-multiplexed optical memory with urethane–urea copolymers

Samer Alasfar, Masahiko Ishikawa, Yoshimasa Kawata, Chikara Egami, Okihiro Sugihara, Naomichi Okamoto, Masaaki Tsuchimori, and Osamu Watanabe  »View Author Affiliations


Applied Optics, Vol. 38, Issue 29, pp. 6201-6204 (1999)
http://dx.doi.org/10.1364/AO.38.006201


View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a polarization-multiplexed optical memory with urethane–urea copolymers. The side chains of the urethane–urea copolymers induce cis–trans isomerization by illumination of blue or green light, and they align perpendicular to the linear polarization of the illuminated light, thus producing optical anisotropy. We found that the material showed selective anisotropy for the particular direction that was perpendicular to that of the recording beam polarization. By use of the anisotropic property three different data pages were multiplexed at the same spot of the medium. Erasure of the recorded bit data is also demonstrated.

© 1999 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4890) Materials : Organic materials
(210.0210) Optical data storage : Optical data storage
(210.4810) Optical data storage : Optical storage-recording materials

History
Original Manuscript: January 25, 1999
Revised Manuscript: June 25, 1999
Published: October 10, 1999

Citation
Samer Alasfar, Masahiko Ishikawa, Yoshimasa Kawata, Chikara Egami, Okihiro Sugihara, Naomichi Okamoto, Masaaki Tsuchimori, and Osamu Watanabe, "Polarization-multiplexed optical memory with urethane–urea copolymers," Appl. Opt. 38, 6201-6204 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-29-6201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  2. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991). [CrossRef] [PubMed]
  3. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Application in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lesard, ed., Proc. SPIE2042, 314–325 (1993). [CrossRef]
  4. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993). [CrossRef]
  5. W. E. Moerner, “Molecular electronics for frequency domain optical storage; persistent spectral hole-burning: a review,” J. Mol. Electron. 1, 55–71 (1985).
  6. Z. Sekkat, W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855–1867 (1995). [CrossRef]
  7. Z. Sekkat, P. Prêtre, A. Knoesen, W. Volksen, V. Y. Lee, R. D. Miller, J. Wood, W. Knoll, “Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes,” J. Opt. Soc. Am. B 15, 401–413 (1998). [CrossRef]
  8. O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the film of non-linear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996). [CrossRef]
  9. M. Tsuchimori, O. Watanabe, S. Ogata, A. Okuda, “Second-order optical nonlinearity of urethane–urea copolymers: influence of main-chain structure,” Jpn. J. Appl. Phys. 36, 5518–5522 (1997). [CrossRef]
  10. W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 337, 43–46 (1995). [CrossRef]
  11. W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991). [CrossRef]
  12. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4318 (1984). [CrossRef] [PubMed]
  13. T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990). [CrossRef] [PubMed]
  14. Y. Kawata, T. Tanaka, S. Kawata, “Randomly accessible, multilayered optical memory with a Bi12Si20 crystal,” Appl. Opt. 35, 5308–5311 (1996). [CrossRef] [PubMed]
  15. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998). [CrossRef]
  16. M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 22, 1781–1783 (1998). [CrossRef]
  17. S. Hell, R. W. Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for the size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE1139, 92–98 (1989). [CrossRef]
  18. T. Wilson, R. Juškaitis, P. Higton, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997). [CrossRef]
  19. Y. Kawata, W. Inami, “Confocal microscope for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648–6650 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited