OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 456–461

Design of an Integrating Cavity Absorption Meter

Dane M. Hobbs and Norman J. McCormick  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 456-461 (1999)
http://dx.doi.org/10.1364/AO.38.000456


View Full Text Article

Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of integrating cavity absorption meters of general geometry is analyzed for cases in which the incident illumination of the cavity is spatially uniform and isotropic, such as the meter of Fry et al. [Appl. Opt. 31, 2055 (1992)]. The analysis by Kirk [Appl. Opt. 34, 4397 (1995)] for the probability of photon survival in a spherical meter is extended to general geometries. An estimate of the effect of the shape of the cavity on the estimated absorption coefficient is given.

© 1999 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(300.1030) Spectroscopy : Absorption

Citation
Dane M. Hobbs and Norman J. McCormick, "Design of an Integrating Cavity Absorption Meter," Appl. Opt. 38, 456-461 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-456


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055–2065 (1992).
  2. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  3. J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity,” Appl. Opt. 34, 4397–4408 (1995).
  4. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36, 6123–6128 (1997).
  5. K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron Diffusion, Los Alamos Scientific Laboratory Rep. (Los Alamos National Laboratory, Los Alamos, N.M., 1953), Vol. 1, pp. 17–42.
  6. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), p. 27.
  7. G. K. Kristiansen, B. Tollander, and L. I. Tiren, “Tables related to the mean square chord length in right parallelepipeds,” Nukleonik 10, 45–47 (1967).
  8. I. Carlvik, “Collision probabilities for finite cylinders and cuboids,” Nucl. Sci. Eng. 30, 150–151 (1967) and Aktiebolaget Atomenergi Rep. AE-281 (Stockholm, Sweden, 1967).
  9. S. Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media and Cambridge U. Press, Cambridge, UK, 1996).
  10. J. T. O. Kirk, Light & Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1994), Table 3.2.
  11. J. T. O. Kirk, Marine Optics, P.O. Box 117, Murrumbateman, NSW 2582, Australia (personal communication, 1998).
  12. J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited