OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 462–475

Simple Monte Carlo methods to estimate the spectra evaluation error in differential-optical-absorption spectroscopy

Martin Hausmann, Uwe Brandenburger, Theo Brauers, and Hans-Peter Dorn  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 462-475 (1999)
http://dx.doi.org/10.1364/AO.38.000462


View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Differential-optical-absorption spectroscopy (DOAS) permits the sensitive measurement of concentrations of trace gases in the atmosphere. DOAS is a technique of well-defined accuracy; however, the calculation of a statistically sound measurement precision is still an unsolved problem. Usually one evaluates DOAS spectra by performing least-squares fits of reference absorption spectra to the measured atmospheric absorption spectra. Inasmuch as the absorbance from atmospheric trace gases is usually very weak, with optical densities in the range from 10-5 to 10-3, interference caused by the occurrence of nonreproducible spectral artifacts often determines the detection limit and the measurement precision. These spectral artifacts bias the least-squares fitting result in two respects. First, spectral artifacts to some extent are falsely interpreted as real absorption, and second, spectral artifacts add nonstatistical noise to spectral residuals, which results in a significant misestimation of the least-squares fitting error. We introduce two new approaches to investigate the evaluation errors of DOAS spectra accurately. The first method, residual inspection by cyclic displacement, estimates the effect of false interpretation of the artifact structures. The second method applies a statistical bootstrap algorithm to estimate properly the error of fitting, even in cases when the condition of random and independent scatter of the residual signal is not fulfilled. Evaluation of simulated atmospheric measurement spectra shows that a combination of the results of both methods yields a good estimate of the spectra evaluation error to within an uncertainty of ∼10%.

© 1999 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(030.6600) Coherence and statistical optics : Statistical optics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.1030) Spectroscopy : Absorption

History
Original Manuscript: April 13, 1998
Revised Manuscript: September 21, 1998
Published: January 20, 1999

Citation
Martin Hausmann, Uwe Brandenburger, Theo Brauers, and Hans-Peter Dorn, "Simple Monte Carlo methods to estimate the spectra evaluation error in differential-optical-absorption spectroscopy," Appl. Opt. 38, 462-475 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-462


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Platt, D. Perner, H. W. Pätz, “Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329–6335 (1979). [CrossRef]
  2. U. Platt, D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, SO2, by differential optical absorption in the near UV,” J. Geophys. Res. 85, 7453–7458 (1980). [CrossRef]
  3. U. Platt, M. Hausmann, “Spectroscopic measurements of the free radicals NO3, BrO, IO, and OH in the troposphere,” Res. Chem. Intermed. 20, 557–578 (1994). [CrossRef]
  4. B. Trost, J. Stutz, U. Platt, “UV-absorption cross section of a series of monocyclic aromatic compounds,” Atmos. Environ. 31, 3999–4008 (1997). [CrossRef]
  5. U. Platt, “Differential optical absorption spectroscopy,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).
  6. W. H. Press, B. P. Flannery, S. A. Teukolskey, W. T. Vetting, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1986).
  7. U. Brandenburger, T. Brauers, H.-P. Dorn, M. Hausmann, D. H. Ehhalt, “In-situ measurements of thropospheric hydroxyl radicals by folded long-path laser absorption during the field campaign POPCORN in 1994,” J. Atmos. Chem. 31, 181–204 (1998). [CrossRef]
  8. J. M. C. Plane, C.-F. Nien, “Atmospheric monitoring by differential optical absorption spectrometry,” in Advances in Spectroscopy, Vol. 24 of Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, ed. (Wiley, New York, 1992).
  9. J. M. C. Plane, N. Smith, “Differential optical absorption spectrometer for measuring atmospheric trace gases,” Rev. Sci. Instrum. 63, 1867–1876 (1995). [CrossRef]
  10. G. H. Mount, “The measurement of tropospheric OH by long path absorption. 1. Instrumentation,” J. Geophys. Res. 97, 2427–2444 (1992). [CrossRef]
  11. T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of differential optical absorption spectroscopy using multi-channel-scanning-technique,” Appl. Opt. 34, 4472–4479 (1995). [CrossRef] [PubMed]
  12. H.-P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in situ laser long-path absorption instrument for the measurement of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3380 (1995). [CrossRef]
  13. J. Stutz, U. Platt, “Numerical analysis and error estimation of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996). [CrossRef] [PubMed]
  14. J. Stutz, U. Platt, “Improving long-path differential optical absorption spectroscopy (DOAS) with a quartz-fiber mode mixer,” Appl. Opt. 36, 1105–1115 (1997). [CrossRef] [PubMed]
  15. M. Hausmann, U. Brandenburger, T. Brauers, H.-P. Dorn, “Detection of tropospheric OH radicals by long-path differential-optical-absorption spectroscopy: Experimental setup, accuracy, and precision,” J. Geophys. Res. 102, 16,011–16,022 (1997). [CrossRef]
  16. J. W. Harder, R. O. Jakoubek, G. H. Mount, “Measurement of tropospheric trace gases by long-path differential absorption spectroscopy during the 1993 OH photochemistry experiment,” J. Geophys. Res. 102, 6215–6226 (1997). [CrossRef]
  17. H.-P. Dorn, J. Callies, U. Platt, D. H. Ehhalt, “Measurement of tropospheric OH concentration by laser long-path absorption spectroscopy,” Tellus 40B, 437–445 (1988). [CrossRef]
  18. S. Solomon, A. L. Schmeltekopf, R. W. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 8311–8319 (1987). [CrossRef]
  19. C. Camy-Peyret, B. Bergquisk, B. Galle, M. Carleer, C. Clerbaux, R. C. Colin, C. Fayt, F. Goutail, M. Nunes Pinharanda, J. P. Pommereau, M. Hausmann, U. Platt, I. Pundt, T. Rudolph, C. Herman, P. C. Simon, A. C. Vandaele, J. M. C. Plane, N. Smith, “Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy,” J. Atmos. Chem. 23, 51–80 (1996). [CrossRef]
  20. T. Brauers, U. Aschmutat, U. Brandenburger, H.-P. Dorn, M. Hausmann, M. Hessling, A. Hofzumahaus, F. Holland, C. Plass-Dülmer, D. H. Ehhalt, “Intercomparison of the tropospheric OH radical measurements by multiple folded laser long-path absorption and laser induced fluorescence,” Geophys. Res. Lett. 23, 2545–2548 (1996). [CrossRef]
  21. U. Platt, L. Marquard, T. Wagner, D. Perner, “Corrections for zenith scattered light DOAS,” Geophys. Res. Lett. 24, 1759–1762 (1997). [CrossRef]
  22. A. Pierson, J. Goldstein, “Stray light in spectrometers: causes and cures,” Laser Optron., 67–74 (September1989).
  23. H. Weichsel, Laser Beam Propagation in the Atmosphere (SPIE Optical Engineering Press, Bellingham, Wash., 1990).
  24. N. Smith, J. M. C. Plane, C.-F. Nien, P. A. Solomon, “Nighttime radical chemistry in the San Joaquin Valley,” Atmos. Environ. 29, 2887–2897 (1995). [CrossRef]
  25. J. Harder, G. Mount, “Long path differential absorption measurements of tropospheric molecules,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE1491, 33–42 (1991). [CrossRef]
  26. J. Callis, “Absorptionsspektroskopischer Nachweis von Hydroxylradikalen in der Troposphäre,” Ph.D. dissertation (University of Cologne, Cologne, Germany, 1988).
  27. T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, MFC Version 1.98 User Manual (University of Heidelberg and Forschungszentrum Jülich, Jülich, Germany, 1993).
  28. B. Efron, “Bootstrap methods: another look at the jacknife,” Ann. Statist. 7, 1–26 (1979). [CrossRef]
  29. B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993). [CrossRef]
  30. D. N. Politis, J. P. Romano, “A circular block-re-sampling procedure for stationary data,” in Exploring the Limits of Bootstrap, R. Lepage, L. Billard, eds. (Wiley, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited