OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 505–515

Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer

Jean-Marc Thériault  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 505-515 (1999)
http://dx.doi.org/10.1364/AO.38.000505


View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modeling study aimed at characterizing the radiometric properties of a double-beam Fourier-transform infrared interferometer is presented. Measurements showed that the two responsivities associated with each interferometer channel are different in certain spectral regions. This anomaly was attributed to a dissymmetry between the optical transmissions of the two plates that form the beam splitter. This dissymmetry is primarily responsible for the instrument residual emission. A secondary cause of residual emission is attributed to the relative alignment of the two input optics. Both effects were taken into account in a model that gives the instrument residual emission in terms of the beam splitter temperature. Actual results indicate that in the 7–14-µm window the instrument residual emission can be modeled with an absolute radiometric error smaller than 0.5 K (blackbody at 290 K). The model was used to develop an automatic calibration procedure that yields radiance errors smaller than 0.05 µW/cm2 sr cm-1 in the 7–14-µm band. The radiometric stability of the interferometer was analyzed.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(220.2740) Optical design and fabrication : Geometric optical design
(230.1360) Optical devices : Beam splitters
(260.3160) Physical optics : Interference
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

History
Original Manuscript: June 5, 1998
Revised Manuscript: September 24, 1998
Published: January 20, 1999

Citation
Jean-Marc Thériault, "Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer," Appl. Opt. 38, 505-515 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Smith, H. M. Woolf, H. E. Revercomb, “Linear simultaneous solution for the retrieval of temperature and absorbing constituents from radiance spectra,” Appl. Opt. 30, 1117–1123 (1991). [CrossRef] [PubMed]
  2. D. Lubin, A. S. Simpson, “The Longwave emission signature of urban pollution: radiometric FTIR measurement,” Geophys. Res. Lett. 21, 37–40 (1994). [CrossRef]
  3. W. F. J. Evans, E. Puckrin, “An observation of the atmospheric emission spectrum of CFC-11,” Geophys. Res. Lett. 21, 2381–2384 (1994). [CrossRef]
  4. M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995). [CrossRef] [PubMed]
  5. R. T. Kroutil, R. J. Combs, R. B. Knapp, J. P. Godfrey, “Infrared interferogram analysis for ammonia detection with passive FT-IR spectrometry,” in Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi, E. Howden, eds., Proc. SPIE2763, 86–102 (1996). [CrossRef]
  6. D. S. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN,” Appl. Opt. 35, 6090–6098 (1996). [CrossRef] [PubMed]
  7. R. V. Allen, F. J. Mucray, X. Liu, “Mid-infrared measurements of the atmospheric emission over the South Pole using a radiometrically calibrated Fourier transform Spectrometer,” Appl. Opt. 35, 1523–1530 (1996). [CrossRef] [PubMed]
  8. J.-M. Thériault, C. Bradette, J. Gilbert, “Atmospheric remote sensing with a ground-based spectrometer system,” in Infrared Technology and Applications XXII, B. F. Andresen, M. Strojnik, M. S. Scholl, eds., Proc. SPIE2744, 664–672 (1996). [CrossRef]
  9. Also see recent papers in Proceedings of the SPIE Conference on Electro-Optical Technology for Remote Chemical Detection and Identification, M. Fallahi, E. Howden, eds., Proc. SPIE2763 (1996), Proc. SPIE3082 (1997), Proc. SPIE3383 (1998).
  10. J.-M. Thériault, C. Bradette, A. Villemaire, M. Chamberland, J. Giroux, “Differential detection with a double-beam interferometer,” in Electro-Optical Technology for Remote Chemical Detection and Identification II, M. Fallahi, E. Howden, eds., Proc. SPIE3082, 65–75 (1997). [CrossRef]
  11. A. Villemaire, M. Chamberland, J. Giroux, R. L. Lachance, J.-M. Thériault, “Radiometric calibration of FT-IR remote sensing instrument,” in Electro-Optical Technology for Remote Chemical Detection and Identification II, M. Fallahi, E. Howden, eds., Proc. SPIE3082, 83–91 (1997). [CrossRef]
  12. R. L. Lachance, J.-M. Thériault, C. Lafond, A. Villemaire, “Gaseous emanation detection algorithm using a Fourier transform interferometer operating in differential mode,” in Electro-Optical Technology for Remote Chemical Detection and Identification III, M. Fallahi, E. Howden, eds., Proc. SPIE3383, 124–132 (1998). [CrossRef]
  13. P. Fellgett, “Les progrès Récents en spectroscopie interférentielle, Bellevue,” Colloq. Int. C. N. R. S. p. 53 (1957).
  14. T. F. Zehnpfennig, O. Shepherd, S. Rappaport, W. P. Reidy, G. Vanasse, “Background suppression in double-beam interferometry,” Appl. Opt. 18, 1996–2002 (1979). [CrossRef] [PubMed]
  15. G. A. Vanasse, R. E. Murphy, F. H. Cook, “Double-beaming technique in Fourier spectroscopy,” Appl. Opt. 15, 290–291 (1976). [CrossRef] [PubMed]
  16. O. Shepherd, A. G. Hurd, R. B. Wattson, H. J. P. Smith, G. A. Vanasse, “Spectral measurements of stack effluents using a double-beam interferometer with background suppression,” Appl. Opt. 20, 3972–3980 (1981). [CrossRef] [PubMed]
  17. H. Krenn, I. Roschger, G. Bauer, “Dual-beam interferometer for optical difference measurements,” Appl. Opt. 23, 3065–3074 (1984). [CrossRef] [PubMed]
  18. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  19. C. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993). [CrossRef] [PubMed]
  20. J. Schreiber, T. Blumenstock, H. Ficher, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996). [CrossRef] [PubMed]
  21. J.-M. Thériault, “Beam splitter layer emission in Fourier-transform infrared Interferometer,” Appl. Opt. 37, 8348–8351 (1998). [CrossRef]
  22. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited