OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 522–529

Comparison of the Characteristics of Double-Pass Erbium-Doped Superfluorescent Fiber Sources Obtained from Different Flattening Techniques

Tsair-Chun Liang, Yun-Shi Lin, and Yung-Kuang Chen  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 522-529 (1999)
http://dx.doi.org/10.1364/AO.38.000522


View Full Text Article

Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate and compare the characteristics of erbium-doped superfluorescent fiber sources (SFS’s) obtained from the use of different flattening techniques in double-pass forward (DPF) and double-pass backward (DPB) configurations. The intrinsic flattening technique consists of optimizing the length of the erbium-doped fiber. The extrinsic flattening methods include the addition of a samarium-doped fiber (SDF) and a fiber-Bragg-grating (FBG) notched filter at the output end separately to shape the SFS spectrum. Although intrinsically flattened DPF and DPB SFS’s have a large output power of >34 mW, they are accompanied by an ~3-dB ripple. The FBG-flattened DPF and DPB SFS’s can achieve a wide linewidth of 35 nm with a small ripple of ~1.7 dB and better pump-power-dependent mean-wavelength stability; SDF-flattened DPF and DPB SFS’s are inferior because of the SDF’s lossy spectrum.

© 1999 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(140.3510) Lasers and laser optics : Lasers, fiber
(230.1480) Optical devices : Bragg reflectors

Citation
Tsair-Chun Liang, Yun-Shi Lin, and Yung-Kuang Chen, "Comparison of the Characteristics of Double-Pass Erbium-Doped Superfluorescent Fiber Sources Obtained from Different Flattening Techniques," Appl. Opt. 38, 522-529 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-522


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. C. Cutler, S. A. Newton, and H. J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett. 5, 488 (1980).
  2. W. K. Burns, C. L. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
  3. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
  4. R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefvre, and H. J. Shaw, “Source statics and the Kerr effect in fiber-optic gyroscopes,” Opt. Lett. 7, 563–565 (1982).
  5. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
  6. P. F. Wyscocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pump near 980 nm,” Opt. Lett. 16, 961–963 (1991).
  7. D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
  8. J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “A high-stability fiber amplifier source for the fiber optic gyroscope,” J. Lightwave Technol. 15, 1689–1694 (1997).
  9. D. C. Hall and W. K. Burns, “Wavelength stability optimisation in Er3+-doped superfluorescent fibre sources,” Electron. Lett. 30, 653–654 (1994).
  10. L. A. Wang and C. D. Chen, “Stable and broadband Er-doped superfluorescent fibre sources using double-pass backward configuration,” Electron. Lett. 32, 1815–1817 (1996).
  11. L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
  12. D. K. Jung, S. K. Shin, C. H. Lee, and Y. C. Chung, “WDM PON based on spectrum-sliced fiber amplifier light source,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 400–401.
  13. S. K. Liaw and Y. K. Chen, “Passive gain-equalized wideband erbium-doped fiber amplifier using sarimium-doped fiber,” IEEE Photon. Technol. Lett. 8, 879–881 (1996).
  14. Y. K. Chen and S. K. Liaw, “Optimum gain-equalized configuration of wideband erbium-doped amplifier using interstage sarimium-doped fiber and midway isolator,” Electron. Lett. 32, 2175–2177 (1996).
  15. C. W. Hodgson and A. M. Vengsarkar, “Spectrally shaped high-power amplified spontaneous emission sources incorporating long-period grating,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper TuG3.
  16. H. J. Patrick, A. D. Kersey, W. K. Burns and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long-period fibre grating wavelength stabilisation,” Electron. Lett. 33, 2061–2063 (1997).
  17. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, Boston, Mass., 1993), Chap. 2, pp. 5–25.
  18. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre superluminescent sources,” Electron. Lett. 26, 96–98 (1990).
  19. S. D. Dyer and K. B. Rochford, “Spectral tailoring of erbium superfluorescent fiber source,” Electron. Lett. 34, 1137–1139 (1998).
  20. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80 nm ultra-wideband erbium-doped silica fiber amplifier,” Electron. Lett. 33, 1965–1967 (1997).
  21. A. Mori, and Y. Ohishi, “Tellurite-based EDFAs for broadband communication,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper WA1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited