OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 577–584

Nonresonant Referenced Laser-Induced Thermal Acoustics Thermometry in Air

Roger C. Hart, R. Jeffrey Balla, and Gregory C. Herring  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 577-584 (1999)
http://dx.doi.org/10.1364/AO.38.000577


View Full Text Article

Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a detailed investigation of nonresonant laser-induced thermal acoustics (LITA) for the single-shot measurement of the speed of sound (<i>v</i><sub><i>S</i></sub>) in an oven containing room air. A model for the speed of sound that includes important acoustic relaxation effects is used to convert the speed of sound into temperature. A reference LITA channel is used to reduce uncertainties in <i>v</i><sub><i>S</i></sub>. Comparing thermocouple temperatures with temperatures deduced from our <i>v</i><sub><i>S</i></sub> measurements and model, we find the mean temperature difference from 300 to 650 K to be 1% (∓2ς). The advantages of using a reference LITA channel are discussed.

© 1999 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.6430) Spectroscopy : Spectroscopy, photothermal

Citation
Roger C. Hart, R. Jeffrey Balla, and Gregory C. Herring, "Nonresonant Referenced Laser-Induced Thermal Acoustics Thermometry in Air," Appl. Opt. 38, 577-584 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-577


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  2. P. Snowdon, S. M. Skippon, M. Kaczmarek, and P. Ewart, “Degenerate four-wave mixing and coherent anti-Stokes Raman scattering: applications in combustion diagnostics—species imaging and improved temperature measurements,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 159–168.
  3. T. Dreier and D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990).
  4. E. B. Cummings, “Laser-induced thermal acoustics: simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
  5. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  6. E. B. Cummings, H. G. Hornung, M. S. Brown, and P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995).
  7. A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, “Electrostrictive generation of non-resonant gratings in the gas phase by multimode lasers,” Phys. Rev. A 51, 655–662 (1995).
  8. W. Hubschmid, B. Hemmerling, and A. Stampanoni-Panariello, “Rayleigh and Brillouin modes in electrostrictive gratings,” J. Opt. Soc. Am. B 12, 1850–1854 (1995).
  9. M. S. Brown and W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propulsion Power 15 (January/February 1999).
  10. A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, “Temperature measurements in gases using laser-induced electrostrictive gratings,” Appl. Phys. B. 67, 125–130 (1998).
  11. E. B. Cummings, I. A. Leyva, and H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34, 3290–3302 (1995).
  12. P. H. Paul, R. L. Farrow, and P. M. Danehy, “Gas-phase thermal-grating contributions to four-wave mixing,” J. Opt. Soc. Am. B 12, 384–392 (1995).
  13. E. B. Cummings, “Laser induced thermal acoustics,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1995).
  14. S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), Chap. 11.
  15. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
  16. F. M. Porter, D. A. Greenhalgh, P. J. Stopford, D. R. Williams, and C. A. Baker, “A study of CARS nitrogen thermometry at high pressure,” Appl. Phys. B 51, 31–38 (1990).
  17. M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, and D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
  18. S. Kroll, P.-E. Bengtsson, M. Alden, and D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990).
  19. P. Snowden, S. M. Skippon, and P. Ewart, “Improved precision of single-shot temperature measurements by broadband CARS by use of a modeless laser,” Appl. Opt. 30, 1008–1010 (1991).
  20. A. C. Eckbreth, “Coherent laser diagnostics for temperature/species measurements in advanced engines,” in Proceedings of the NATO Advanced Study Institute on Combustion Flow Diagnostics, Montechoro, Algarve, Portugal 16–27 April, 1990 (Kluwer Academic, Norwell, Mass., 1992), pp. 399–438.
  21. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, Chichester, UK, 1988), Chap. 5.
  22. H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W. P. Mason and R. N. Thurston, eds. (Academic, Orlando, Fla., 1984), Vol. 17, pp. 145–232.
  23. K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).
  24. A. J. Zuckerwar, “Speed of sound in real gases. I. Theory,” J. Acoust. Soc. Am. 100, 2747 (1996).
  25. W. van Dael and A. van Itterbeek, “Velocity of sound in dense fluids,” in Physics of High Pressures and the Condensed Phase, A. van Itterbeek, ed. (North-Holland, Amsterdam, 1965), Chap. 7.
  26. A. B. Bahtia, Ultrasonic Absorption (Dover, New York, 1967).
  27. H.-J. Bauer, “Theory of relaxation phenomena in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 2.
  28. H. O. Kneser, “Relaxation processes in gases,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 2A, Chap. 3.
  29. R. T. Beyer and S. V. Letcher, Physical Ultrasonics (Academic, New York, 1969).
  30. M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31, 155–161 (1959).
  31. G. S. K. Wong, “Speed of sound in standard air,” J. Acoust. Soc. Am. 79, 1359–1366 (1986).
  32. M. Greenspan, “Comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 370–372 (1987).
  33. G. S. K. Wong, “Response to comments on speed of sound in standard air,” J. Acoust. Soc. Am. 82, 373–374 (1987).
  34. G. P. Howell and C. L. Morfey, “Frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 375–376 (1987).
  35. G. S. K. Wong, “Response to frequency dependence of the speed of sound in air,” J. Acoust. Soc. Am. 82, 376–377 (1987).
  36. J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, and H. W. Woolley, “Tables of thermal properties of gases,” Natl. Bur. Stand. (U.S.) Circ. 564 (U.S. GPO, Washington, D.C., 1955).
  37. O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration,” J. Acoust. Soc. Am. 93, 2510–2516 (1993).
  38. Y. S. Touloukian and T. Makita, “Specific heat, nonmetallic liquids and gases,” in Thermophysical Properties of Matter (Plenum, New York, 1970), Vol. 6.
  39. L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989).
  40. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longmans, Green, New York, 1986).
  41. J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Clarendon, Oxford, UK, 1980).
  42. A. J. Zuckerwar and R. W. Meredith, “Low frequency absorption of sound in air,” J. Acoust. Soc. Am. 78, 946–955 (1985).
  43. B. J. McBride, S. Gordon, and M. A. Reno, “Coefficients for calculating thermodynamic and transport properties of individual species,” NASA Tech. Mem. 4513 (1993).
  44. H. E. Bass, “Absorption of sound by air: high temperature predictions,” J. Acoust. Soc. Am. 69, 124–138 (1981).
  45. H. E. Bass and L. C. Sutherland, “On the rotational collision number for air at elevated temperatures,” J. Acoust. Soc. Am. 59, 1317–1318 (1976).
  46. T. G. Winter and G. L. Hill, “High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen,” J. Acoust. Soc. Am. 42, 848–858 (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited