OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 3 — Jan. 20, 1999
  • pp: 594–598

Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers

Tasoltan T. Basiev, Alexander A. Sobol, Petr G. Zverev, Vyacheslav V. Osiko, and Richard C. Powell  »View Author Affiliations


Applied Optics, Vol. 38, Issue 3, pp. 594-598 (1999)
http://dx.doi.org/10.1364/AO.38.000594


View Full Text Article

Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparison of the spectroscopic parameters of Raman-active vibronic modes in various crystalline materials with a view to the use of these crystals for stimulated Raman scattering (SRS) is presented. It includes data on the Raman frequency shift, linewidth, integral, and peak Raman scattering cross sections. For steady-state SRS the highest Raman gain coefficient has been proved to be in barium nitrate and sodium nitrate crystals; for transient SRS it is expected to be in lithium niobate and tungstate crystals. Barium tungstate and strontium tungstate are proposed as new highly efficient Raman materials for both SRS cases.

© 1999 Optical Society of America

OCIS Codes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(290.5910) Scattering : Scattering, stimulated Raman
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
Tasoltan T. Basiev, Alexander A. Sobol, Petr G. Zverev, Vyacheslav V. Osiko, and Richard C. Powell, "Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers," Appl. Opt. 38, 594-598 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-3-594


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite and α-sulphur single crystals,” Appl. Phys. Lett. 3, 137–138 (1963).
  2. G. Bisson and G. Mayer, “Effects Raman stimule’s dans la calcite,” Cr. Acad. Sci. 265, 397–398 (1967).
  3. K. Park, “New width data of the A1g Raman line in calcite,” Phys. Lett. 22, 39–41 (1966); K. Park, “Thermal variation of a Raman line width in calcite,” Phys. Lett. A 25, 490–491 (1967).
  4. S. N. Karpukhin and A. I. Stepanov, “Intracavity Raman emission in Ba(NO3)2, NaNO3 and CaCO3 crystals,” Sov. J. Quantum Electron. 16, 1027–1032 (1986).
  5. G. Eckhardt, “Selection of Raman materials,” IEEE J. Quantum Electron. QE-2, 1–8 (1966).
  6. A. S. Eremenko, S. N. Karpukhin, and A. I. Stepanov, “SRS of the second harmonic of neodymium laser in nitrate crystals,” Sov. J. Quantum Electron. 10, 113–116 (1980).
  7. T. T. Basiev, V. N. Voitsekhovskii, P. G. Zverev, F. V. Karpushko, A. V. Lubimov, S. B. Mirov, V. P. Morozov, I. V. Mochalov, A. A. Pavlyuk, G. V. Sinitsyn, and V. E. Yakobson, “Conversion of tunable radiation from a laser utilising an LiF crystal containing F2 colour centres by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals,” Sov. J. Quantum Electron. 17, 1560–1563 (1987).
  8. P. G. Zverev and T. T. Basiev, “Compact SRS laser on barium nitrate crystal,” presented at the All-Union Conference Laser Optics, Leningrad, 21–25 June 1993.
  9. P. G. Zverev, T. T. Basiev, I. V. Ermakov, and A. M. Prokhorov, “Stimulated Raman scattering in barium nitrate crystal in the external optical cavity,” in Laser Methods of Surface Treatment and Modification: ALT ’94 International Conference, A. M. Prokhorov and V. I. Pustovoy, eds., Proc. SPIE 2498, 164–169 (1994).
  10. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, “Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 non-linear crystals,” Opt. Lett. 20, 1017–1019 (1995).
  11. P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97, 59–63 (1993).
  12. K. Andryunas, Y. K. Vishchakas, V. Kabelka, I. V. Mochalov, A. A. Pavlyuk, G. T. Petrovskii, and V. P. Syrus, “SRS-self-conversion of Nd3+ laser emission in tungstate crystals,” JETP Lett. 42, 410–412 (1985).
  13. A. M. Ivanuk, M. A. Ter-Pogosyan, P. A. Shakhverdov, V. D. Belyaev, V. L. Ermolayev, and N. P. Tikhonova, “Picosecond light pulses under intracavity stimulated Raman scattering in the active element of a neodymium laser,” Opt. Spectrosk. 59, 950–952 (1985); A. M. Ivanuk, V. A. Sandulenko, M. A. Ter-Pogosyan, P. A. Shakhverdov, V. G. Chervinskii, A. V. Lukin, and V. L. Ermolaev, “Intraresonator stimulated Raman scattering in a nanosecond neodymium laser based on potassium gadolinium tungstate,” Opt. Spectrosk. 62, 961–962 (1987).
  14. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 10, pp. 146–185 of Russian translation published by Nauka, Moscow (1989).
  15. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1972).
  16. Y. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1969).
  17. M. G. Raymer and J. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1990), Vol. 23, pp. 181–270.
  18. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois eds. (North-Holland, Amsterdam, 1972), Chap. E2, pp. 1077–1150.
  19. Yu. K. Vishchakas, I. V. Mochalov, A. V. Mikhaylov, R. F. Klevtsova, and A. V. Lyubimov, “Crystal structure and Raman scattering in KGd(WO4)2 crystals,” Litov. Fiz. Sb. 28, 224–234 (1988).
  20. P. G. Zverev, W. Jia, H. Liu, and T. T. Basiev, “Vibrational dynamic of the Raman-active mode in barium nitrate crystal,” Opt. Lett. 20, 2378–2380 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited