OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6325–6332

Surface-grating distributed Bragg reflector quantum-well lasers fabricated in AlGaAs–GaAs asymmetric epitaxial waveguides

Hoshin H. Yee, Steven Ayling, and Richard M. De La Rue  »View Author Affiliations

Applied Optics, Vol. 38, Issue 30, pp. 6325-6332 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ridge waveguide lasers, integrated with single deep-surface distributed Bragg reflectors (DBR’s) in the passive section, were fabricated with a GaAs–AlGaAs double-quantum-well structure in an asymmetric waveguide. Third-order gratings, with a period of 389 nm and defined by holographic lithography, were formed by low-damage reactive ion etching processes. The grating losses and optical coupling coefficients were estimated, in particular, by use of the relationship between the real and the effective grating lengths that were computed and reexamined by measurements of grating periodicity and mode spacing. By use of two different geometries, we produced guide lines for obtaining high-performance lasing properties for these surface-grating DBR lasers. Additionally, a detailed analysis of lasing wavelength shifts was carried out for this study. It was found that injected-carrier-induced effects shift the lasing wavelength much more than gain–loss competition within an extended DBR laser cavity.

© 1999 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.2900) Holography : Optical storage materials
(140.3570) Lasers and laser optics : Lasers, single-mode

Original Manuscript: March 10, 1999
Revised Manuscript: July 18, 1999
Published: October 20, 1999

Hoshin H. Yee, Steven Ayling, and Richard M. De La Rue, "Surface-grating distributed Bragg reflector quantum-well lasers fabricated in AlGaAs–GaAs asymmetric epitaxial waveguides," Appl. Opt. 38, 6325-6332 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design and assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989). [CrossRef]
  2. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23, 804–814 (1987). [CrossRef]
  3. K. Kojima, K. Kyuma, “Multi-quantum well distributed feedback and distributed Bragg reflector lasers,” Semicond. Sci. Technol. 5, 481–493 (1990). [CrossRef]
  4. Y. Suematsu, S. Arai, K. Kishino, “Dynamic single-mode semiconductor lasers with a distributed reflector,” J. Lightwave Technol. 1, 161–175 (1983). [CrossRef]
  5. H. M. Stoll, “Optimally coupled, GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979). [CrossRef]
  6. W. T. Tsang, M. C. Wu, Y. K. Chen, F. S. Choa, R. A. Logan, S. N. G. Chu, A. M. Sergent, P. Magill, K. C. Reichmann, C. A. Burrus, “Long-wavelength InGaAsP/InP multiquantum well distributed feedback and distributed Bragg reflector lasers grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 30, 1370–1380 (1994). [CrossRef]
  7. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett. 3, 6–7 (1991). [CrossRef]
  8. H. Abe, S. G. Ayling, J. H. Marsh, R. M. De La Rue, J. S. Roberts, “Single-mode operation of a surface grating distributed feedback GaAs–AlGaAs laser with variable width waveguide,” IEEE Photon. Technol. Lett. 7, 452–454 (1995). [CrossRef]
  9. S. G. Ayling, M. V. Moreira, H. Abe, A. C. Bryce, R. M. De La Rue, J. H. Marsh, “Deep surface grating DFB and DBR quantum well diode lasers in AlGaAs–GaAs for photonic integration,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE2401, 10–21 (1995). [CrossRef]
  10. D. Hofstetter, H. P. Zappe, J. E. Epler, J. Söchtig, “Single-growth-step GaAs–AlGaAs distributed Bragg reflector lasers with holographically defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994). [CrossRef]
  11. G. M. Smith, J. S. Hughes, M. L. Osowski, D. V. Forbes, J. J. Coleman, “Ridge waveguide distributed Bragg reflector InGaAs/GaAs quantum well lasers,” Electron. Lett. 30, 651–652 (1994). [CrossRef]
  12. R. M. Lammert, J. S. Hughes, S. D. Roh, M. L. Osowski, A. M. Jones, J. J. Coleman, “Low-threshold narrow-linewidth InGaAs–GaAs ridge-waveguide DBR lasers with first-order surface gratings,” IEEE Photon. Technol. Lett. 9, 149–151 (1997). [CrossRef]
  13. T. L. Koch, U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8, 274–293 (1990). [CrossRef]
  14. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Sec. 8-6.
  15. F. Vasey, J. M. Stauffer, Y. Oppliger, F. K. Reinhart, “Characterization of an AlGaAs rib waveguide using a grating in a Fabry–Perot etalon configuration,” Appl. Opt. 30, 3897–3906 (1991). [CrossRef] [PubMed]
  16. A. C. Beer, R. K. Willardson, “Dynamic Single-mode semiconductor lasers with a distributed reflector,” in Vol. 22 of Semiconductors and Semimetals, W. T. Tsang, ed. (Academic Press, New York, 1985), Chap. 4.
  17. A. Yariv, Optical Electronics, 4th ed. (Wiley, New York, 1991), Sec. 13-4.
  18. T. P. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, “Short-cavity InGaAsP injection lasers: dependence of mode spectra and single-longitudinal-mode power on cavity length,” IEEE J. Quantum Electron. 18, 1101–1113 (1982). [CrossRef]
  19. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Sec. 8-2.
  20. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980), Sec. 8-3.
  21. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), Sec. 7-5. [CrossRef]
  22. Ref. 20, Sec. 8-7.
  23. C. H. Henry, R. A. Logan, K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys. 52, 4457–4461 (1981). [CrossRef]
  24. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1991), Sec. 4.3.
  25. Y. Arakawa, A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. QE-21, 1666–1674 (1985). [CrossRef]
  26. A. Tomita, A. Suzuki, “Carrier-induced lasing wavelength shift for quantum well laser diodes,” IEEE J. Quantum Electron. QE-23, 1155–1159 (1987). [CrossRef]
  27. J. Werner, E. Kapon, N. G. Stoffel, E. Colas, S. A. Schwarz, C. L. Schwartz, N. Andreadakis, “Integrated external cavity GaAs–AlGaAs lasers using selective quantum well disordering,” Appl. Phys. Lett. 55, 540–542 (1989). [CrossRef]
  28. H. H. Yee, S. Ayling, R. M. De La Rue, B. Vögele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited