OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6374–6382

Special relativity corrections for space-based lidars

Venkata S. Rao Gudimetla and Michael J. Kavaya  »View Author Affiliations

Applied Optics, Vol. 38, Issue 30, pp. 6374-6382 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated. The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA’s Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(350.6090) Other areas of optics : Space optics

Original Manuscript: June 11, 1999
Revised Manuscript: June 11, 1999
Published: October 20, 1999

Venkata S. Rao Gudimetla and Michael J. Kavaya, "Special relativity corrections for space-based lidars," Appl. Opt. 38, 6374-6382 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  2. M. J. Kavaya, G. D. Spiers, Elena S. Love, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” in Space Instrumentation and Dual-Use Technologies, F. A. Allahdadi, M. P. Chrisp, L. R. Giuliano, W. P. Lantham, F. Shanley, eds., Proc. SPIE2214, 237–249 (1994). [CrossRef]
  3. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in-space technology experiment,” Proc. IEEE 84, 164–187 (1996). [CrossRef]
  4. J. M. Vaughan, K. O. Steinwall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–226 (1996) and Refs. 114–117 therein. [CrossRef]
  5. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994). [CrossRef]
  6. R. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  7. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  8. R. G. Beranek, J. W. Bilbro, D. E. Fitzjarrald, W. D. Jones, V. W. Keller, B. S. Perrine, “Laser atmospheric wind sounder (LAWS),” in Laser Applications in Meteorology and Earth Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 234–248 (1989). [CrossRef]
  9. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, “Feasibility study of satellite-borne lidar global wind monitoring system Part II,” (Environmental Research Laboratories, Wave Propagation Laboratory, Boulder, Colo., August1980).
  10. J. W. Bilbro, R. Beranek, D. Fitzjarrald, J. Mabry, eds., “Shuttle coherent atmospheric lidar experiment: Final report,” (Marshall Space Flight Center, Huntsville, Ala., June1987).
  11. R. T. Menzies, “Doppler lidar atmospheric wind sensors: A comparative performance evaluation for global measurement applications from Earth orbit,” Appl. Opt. 25, 2546–2653 (1986). [CrossRef] [PubMed]
  12. M. J. Kavaya, R. T. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444–3453 (1985). [CrossRef] [PubMed]
  13. J. Fred Holmes, F. Amzajerdian, V. S. Rao Gudimetla, J. M. Hunt, “Remote sensing of atmospheric winds by utilizing speckle–turbulence interaction, a CO2 and optical heterodyne detection,” Appl. Opt. 27, 2532–2538 (1988). [CrossRef] [PubMed]
  14. M. J. Kavaya, G. D. Emmitt, “The Space Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998). [CrossRef]
  15. J. Van Bladel, Relativity and Engineering (Springer-Verlag, New York, 1984). [CrossRef]
  16. D. De Zutter, “Doppler effect from a transmitter in translational motion,” Microwaves Opt. Acoust. 3, 85–92 (1979). [CrossRef]
  17. C. Yeh, “Reflection and transmission of electromagnetic waves by a moving dielectric medium,” J. Appl. Phys. 36, 3513–3517 (1965). [CrossRef]
  18. T. Shiozawa, K. Hazama, N. Kumagai, “Reflection and transmission of electromagnetic waves by a dielectric half-space moving perpendicular to the plane of incidence,” J. Appl. Phys. 38, 4459–4461 (1967). [CrossRef]
  19. H. Fujita, T. Yanese, S. Uchida, “Effect of a moving boundary on the reflections and the transmission of a plane electromagnetic wave,” Electron. Commun. Jpn. (English transl.) 53-B No. 10, 87–90 (1970).
  20. M. Saca, “Brewster angle in a semi-infinite dielectric moving perpendicularly to the interface,” Am. J. Phys. 48, 237–239 (1980). [CrossRef]
  21. C. Yeh, “Brewster angle for a dielectric medium moving at a relativistic speed,” J. Appl. Phys. 38, 5194–5200 (1967). [CrossRef]
  22. T. Shiozawa, N. Kumagai, “Total reflection at the interface between relatively moving media,” Proc. IEEE 55, 1243–1244 (1967). [CrossRef]
  23. T. Hosono, T. Hinata, K. Yuda, “Reflection of electromagnetic waves on the boundary surface between media moving relative to each other and parallel to the boundary and plane of incidence,” Electron. Commun. Jpn. (English transl.) 51-B No. 7, 66–72 (1968).
  24. T. Hosono, T. Hinata, K. Yuda, “Reflection of electromagnetic waves on the boundary surface between media in relative motion perpendicular to the plane of incidence,” Electron. Commun. Jpn. (English transl.) 52-B No. 7, 27–35 (1969).
  25. T. Shiozawa, K. Hazama, “General solution to the problem of reflection and transmission by a moving dielectric medium,” Radio Sci. 3, 569–576 (1968).
  26. V. P. Pyati, “Reflection and refraction of electromagnetic waves by a moving dielectric medium,” J. Appl. Phys. 38, 652–655 (1967). [CrossRef]
  27. J. M. Saca, “Snell’s law for light rays in moving isotropic dielectrics,” Proc. IEEE 68, 409–410 (1980). [CrossRef]
  28. D. Censor, “Scattering of a plane wave at a plane interface separating two moving media,” Radio Sci. 4, 1079–1088 (1969). [CrossRef]
  29. M. Ohkubo, “The surface impedance of a moving medium,” Electron. Commun. Jpn. (English transl.) 52-B No. 11, 125–128 (1969).
  30. C. Yeh, “Reflection from a dielectric-coated moving mirror,” J. Opt. Soc. Am. 57, 657–661 (1967). [CrossRef]
  31. K. Tanaka, K. Hazama, “Reflection and transmission of electromagnetic waves by a moving inhomogeneous medium,” Radio Sci. 7, 973–978 (1972). [CrossRef]
  32. K. Yasakawa, E. Ogawa, H. Fujioka, “Total reflection of Gaussian beam at the interface of moving media,” Electron. Commun. Jpn. (English transl.) 56-B No. 8, 65–71 (1973).
  33. D. G. Ashworth, P. A. Davies, “The Doppler effect in reflecting system,” Proc. IEEE 64, 280–281 (1976). [CrossRef]
  34. D. G. Ashworth, P. A. Davies, “Tests of special relativity using the Doppler effect,” Proc. IEEE 64, 281–283 (1976). [CrossRef]
  35. J. F. Holmes, A. Ishimaru, “Electric dipole radiation in the presence of a moving, dispersive dielectric half-space,” Radio Sci. 5, 61–72 (1970). [CrossRef]
  36. E. W. Young, “Doppler lidar on a polar orbiting platform—relativistic correction required,” in Laser Radar V, R. J. Becherer, ed., Proc. SPIE1222, 154–161 (1990). [CrossRef]
  37. E. C. Jordan, K. G. Balman, Electromagnetic Waves and Radiating Systems (Prentice-Hall, Englewood-Cliffs, N.J., 1968), Chap. 18.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited