OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6388–6397

Modeling the Performance of Direct-Detection Doppler Lidar Systems Including Cloud and Solar Background Variability

Matthew J. McGill, William D. Hart, Jack A. McKay, and James D. Spinhirne  »View Author Affiliations


Applied Optics, Vol. 38, Issue 30, pp. 6388-6397 (1999)
http://dx.doi.org/10.1364/AO.38.006388


View Full Text Article

Acrobat PDF (1703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10–20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

Citation
Matthew J. McGill, William D. Hart, Jack A. McKay, and James D. Spinhirne, "Modeling the Performance of Direct-Detection Doppler Lidar Systems Including Cloud and Solar Background Variability," Appl. Opt. 38, 6388-6397 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-30-6388


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Atlas, “Atmospheric observations and experiments to assess their usefulness in data assimilation,” J. Meteorol. Soc. Jpn. 75, 111–130 (1997).
  2. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
  3. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, and R. M. Banta, “The Multicenter Airborne Coherent Atmospheric Wind Sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
  4. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
  5. M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37, 2675–2686 (1998).
  6. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
  7. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
  8. V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
  9. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2552 (1986).
  10. D. Rees and I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
  11. W. R. Skinner and P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” report NAS8–38775 to Marshall Space Flight Center, Huntsville, Ala., (June 1994).
  12. V. J. Abreu, J. E. Barnes, and P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
  13. K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, and T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
  14. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
  15. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, and N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
  16. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
  17. M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exhange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
  18. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37, 3097–3104 (1998).
  19. J. D. Spinhirne, M. Z. Hansen, and L. O. Caudill, “Cloud top remote sensing by airborne lidar,” Appl. Opt. 22, 1564–1571 (1982).
  20. J. D. Spinhirne and W. D. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations,” Mon. Weather Rev. 118, 2329–2343 (1990).
  21. J. D. Spinhirne, W. D. Hart, and D. L. Hlavka, “Cirrus infrared parameters and shortwave reflectance relations from observations,” J. Atmos. Sci. 53, 1438–1458 (1996).
  22. R. Boers, J. D. Spinhirne, and W. D. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
  23. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
  24. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere (revised),” Environmental Research Paper AFCRL-71–0279 (U.S. Air Force Cambridge Research Laboratories, Bedford, Mass., 1971).
  25. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
  26. C. J. Grund and E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by High Spectral Resolution Lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
  27. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Oceanic Technol. 15, 1043–1050 (1998).
  28. G. D. Emmitt, J. Spinhirne, R. Menzies, D. Winker, and D. Bowdle, “Target atmospheres for use in DWL concept studies,” 4th draft, February 1998. This document can be found at http://cyclone.swa.com/ALD/LidarProducts/targetAtm/.
  29. L. A. Hall, L. J. Heroux, and H. E. Hinteregger, “Solar ultraviolet irradiance,” in Handbook of Geophysics and the Space Environment, A. S. Jursa, ed. NTIS-ADA-167000 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1985).
  30. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstattler-Weissenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K.-U. Eichmann, and M. Eisinger, “The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151–175 (1999).
  31. W. R. Skinner, P. B. Hays, and V. J. Abreu, “Optimization of a triple etalon interferometer,” Appl. Opt. 26, 2817–2827 (1987).
  32. J. A. McKay, “Single and tandem Fabry–Perot etalons as solar background filters for lidar,” submitted to Appl. Opt.
  33. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The High Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10,713–10,723 (1993).
  34. G. Hernandez, Fabry–Perot Interferometers, Vol. 3 of Cambridge Studies in Modern Physics (Cambridge U. Press, New York, 1986).
  35. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38, 432–440 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited