OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6388–6397

Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability

Matthew J. McGill, William D. Hart, Jack A. McKay, and James D. Spinhirne  »View Author Affiliations


Applied Optics, Vol. 38, Issue 30, pp. 6388-6397 (1999)
http://dx.doi.org/10.1364/AO.38.006388


View Full Text Article

Enhanced HTML    Acrobat PDF (1703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10–20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: March 18, 1999
Revised Manuscript: July 6, 1999
Published: October 20, 1999

Citation
Matthew J. McGill, William D. Hart, Jack A. McKay, and James D. Spinhirne, "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability," Appl. Opt. 38, 6388-6397 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-30-6388

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited