OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 30 — Oct. 20, 1999
  • pp: 6408–6420

Infrared and Visible Fourier-Transform Spectra of Sulfuric-Acid-Water Aerosols at 230 and 294 K

Adam E. Heathfield, David A. Newnham, John Ballard, Roy G. Grainger, and Alyn Lambert  »View Author Affiliations


Applied Optics, Vol. 38, Issue 30, pp. 6408-6420 (1999)
http://dx.doi.org/10.1364/AO.38.006408


View Full Text Article

Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The extinction spectra of aqueous sulfuric acid aerosols fully covering the mid-IR to visible regions from 750 to 23,000 cm<sup>−1</sup> (13.9–0.4 μm) have been measured in the laboratory with a Fourier-transform spectrometer. Both large and small aerosol particles with compositions of approximately 60–70-wt. % H<sub>2</sub>SO<sub>4</sub> were generated and their spectra recorded at 230 and 294 K. The spectra were fitted to a model incorporating room-temperature refractive-index data [Appl. Opt. <b>14,</b> 208 (1975)] and Mie theory calculations to characterize the composition and size distributions of the aerosol samples.

© 1999 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Citation
Adam E. Heathfield, David A. Newnham, John Ballard, Roy G. Grainger, and Alyn Lambert, "Infrared and Visible Fourier-Transform Spectra of Sulfuric-Acid-Water Aerosols at 230 and 294 K," Appl. Opt. 38, 6408-6420 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-30-6408


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. P. Turco, R. C. Whitten, and O. B. Toon, “Stratospheric aerosols: observation and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
  2. J. M. Rodriguez, M. K. W. Ko, and N. D. Sze, “Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses,” Nature (London) 352, 134–137 (1991).
  3. J. F. Gleason, P. K. Bhartia, J. R. Herman, R. McPeters, P. Newman, R. S. Stolarski, L. Flynn, G. Labow, D. Larko, C. Seftor, C. Wellemeyer, W. D. Komhyr, A. J. Miller, and W. Planet, “Record low ozone in 1992,” Science 260, 523–526 (1993).
  4. D. W. Fahey, S. R. Kawa, E. L. Woodbridge, P. Tin, J. C. Wilson, H. H. Jonsson, J. E. Dye, D. Baumgardner, S. Borrmann, D. W. Toohey, L. M. Avallone, M. H. Proffitt, J. Margitan, M. Loewenstein, J. R. Podolske, R. J. Salawitch, S. C. Wofsy, M. K. W. Ko, D. E. Anderson, M. R. Schoeberl, and K. R. Chan, “In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion,” Nature (London) 363, 509–514 (1993).
  5. D. R. Hanson, A. R. Ravishankara, and S. Solomon, “Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations,” J. Geophys. Res. 99, 3615–3629 (1994).
  6. M. A. Tolbert, “Sulfate aerosols and polar stratospheric cloud formation,” Science 264, 527–528 (1994).
  7. M. T. Coffey, “Observations of the impact of volcanic activity on stratospheric chemistry,” J. Geophys. Res. 101, 6767–6780 (1996).
  8. S. Borrmann, S. Solomon, J. E. Dye, D. Baumgardner, K. K. Kelly, and K. R. Chan, “Heterogeneous reactions on stratospheric background aerosols, volcanic sulfuric acid droplets, and type 1 polar stratospheric clouds: effects of temperature fluctuations and differences in particle phase,” J. Geophys. Res. 102, 3639–3648 (1997).
  9. A. Lacis, J. Hansen, and M. Sato, “Climate forcing by stratospheric aerosols,” Geophys. Res. Lett. 19, 1607–1610 (1992).
  10. J. T. Houghton, L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, and K. Maskell, eds., IPCC Climate Change 1994, Radiative Forcing of Climate Change and an Evaluation of the Intergovernmental Panel on Climate Control IS92 Emission Scenarios, (Cambridge University P., London, 1995).
  11. H. M. Steele and P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulfuric-acid-water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981).
  12. A. Tabazadeh, O. B. Toon, S. L. Clegg, and P. Hamill, “A new parameterization of H2SO4/H2O aerosol composition: atmospheric implications,” Geophys. Res. Lett. 24, 1931–1934 (1997).
  13. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, and M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994).
  14. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4°N,” J. Atmos. Sci. 54, 2630–2641 (1997).
  15. E. R. Lovejoy and D. R. Hanson, “Measurement of the kinetics of the reactive uptake by submicron sulfuric acid particles,” J. Phys. Chem. 99, 2080–2087 (1995).
  16. A. Lambert, R. G. Grainger, C. D. Rodgers, F. W. Taylor, J. L. Mergenthaler, J. B. Kumer, and S. T. Massie, “Global evolution of the Mount Pinatubo volcanic aerosols observed by the infrared limb-sounding instruments CLAES and ISAMS on UARS,” J. Geophys. Res. 102, 1495–1513 (1997).
  17. C. Brogniez, R. Santer, B. S. Diallo, M. Herman, J. Lenoble, and H. Jäger, “Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter and satellite solar occultation,” J. Geophys. Res. 97, 20805–20823 (1992).
  18. R. G. Grainger, A. Lambert, F. W. Taylor, J. J. Remedios, C. D. Rodgers, M. Corney, and B. J. Kerridge, “Infrared absorption by volcanic stratospheric aerosols observed by ISAMS,” Geophys. Res. Lett. 20, 1283–1286 (1993).
  19. S. E. Anthony, R. T. Tisdale, R. S. Disselkamp, M. A. Tolbert, and J. C. Wilson, “FTIR studies of low temperature sulfuric acid aerosols,” Geophys. Res. Lett. 22, 1105–1108 (1995).
  20. A. K. Bertram, D. D. Patterson, and J. J. Sloan, “Mechanisms and temperatures of the freezing of sulfuric acid aerosols measured by FTIR extinction spectroscopy,” J. Phys. Chem. 100, 2376–2383 (1996).
  21. M. L. Clapp, R. F. Niedziela, L. J. Richwine, T. Dransfield, and R. E. Miller, “Infrared spectroscopy of sulfuric acid/water aerosols: freezing characteristics,” J. Geophys. Res. 102, 8899–8907 (1997).
  22. D. G. Imre, J. Xu, and A. C. Tridico, “Phase transformations in sulfuric acid aerosols: implications for stratospheric ozone depletion,” Geophys. Res. Lett. 24, 69–72 (1997).
  23. A. M. Middlebrook, L. T. Iraci, L. S. McNeill, B. G. Koehler, M. A. Wilson, O. W. Saastad, M. A. Tolbert, and D. R. Hanson, “Fourier transform-infrared studies of thin H2SO4/H2O films: formation, water uptake, and solid-liquid phase changes,” J. Geophys. Res. 98, 20,473–20,481 (1993).
  24. R. Zhang, P. J. Wooldridge, J. P. D. Abbat, and M. J. Molina, “Physical chemistry of the H2SO4/H2O binary system at low temperatures: stratospheric implications,” J. Phys. Chem. 97, 7351–7358 (1993).
  25. G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377 (1908).
  26. M. Kerker, The Scattering of Light and other Electromagnetic Radiation (Academic, New York, 1969).
  27. K. F. Palmer and D. Williams, “Optical constants of sulfuric acid; application to the clouds of Venus?,” Appl. Opt. 14, 208–219 (1975).
  28. L. W. Pinkley and D. Williams, “The infrared optical constants of sulfuric acid at 250 K,” J. Opt. Soc. Am. 66, 122–124 (1976).
  29. R. G. Grainger, A. Lambert, C. D. Rodgers, F. W. Taylor, and T. Deshler, “Stratospheric aerosol effective radius, surface area and volume estimated from infrared measurements,” J. Geophys. Res. 100, 16,507–16,519 (1995).
  30. D. Newnham, J. Ballard, and M. Page, “Doppler-limited spectroscopy at cryogenic temperatures: application of collision cooling,” Rev. Sci. Instrum. 66, 4475–4481 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited