OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 31 — Nov. 1, 1999
  • pp: 6516–6521

Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber

Hiroshi Naruse and Mitsuhiro Tateda  »View Author Affiliations


Applied Optics, Vol. 38, Issue 31, pp. 6516-6521 (1999)
http://dx.doi.org/10.1364/AO.38.006516


View Full Text Article

Enhanced HTML    Acrobat PDF (97 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyze the relation between the pulse width of light launched into an optical fiber and the resultant power spectrum of spontaneous Brillouin backscattered light. Through this analysis, we determine numerically that the bandwidth of the Brillouin backscattered light becomes wider, and thus the measurement accuracy in determining the peak-power frequency degrades in approximately inverse proportion to the launched pulse width. Experimental results with various pulse widths are in good agreement with the derived theoretical results.

© 1999 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(070.4790) Fourier optics and signal processing : Spectrum analysis
(290.1350) Scattering : Backscattering
(290.5820) Scattering : Scattering measurements
(290.5830) Scattering : Scattering, Brillouin

History
Original Manuscript: May 5, 1999
Revised Manuscript: July 12, 1999
Published: November 1, 1999

Citation
Hiroshi Naruse and Mitsuhiro Tateda, "Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber," Appl. Opt. 38, 6516-6521 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-31-6516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broad-band-chirped grating interrogation system for large-strain sensing applications,” IEEE Photon. Technol. Lett. 9, 1616–1618 (1997). [CrossRef]
  2. Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–784 (1997). [CrossRef]
  3. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996). [CrossRef]
  4. M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994). [CrossRef]
  5. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1, 107–108 (1989). [CrossRef]
  6. T. Kurashima, M. Tateda, T. Horiguchi, Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997). [CrossRef]
  7. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995). [CrossRef]
  8. C. N. Pannell, J. Dhliwayo, D. J. Webb, “How to estimate the accuracy of a Brillouin distributed temperature sensor, in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 524–527.
  9. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997). [CrossRef]
  10. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787–789 (1997). [CrossRef] [PubMed]
  11. D. Graus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997). [CrossRef]
  12. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  13. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985). [CrossRef]
  14. P. C. Wait, S. Gaubicher, J. M. Sommer, T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388–389 (1996). [CrossRef]
  15. M. K. Baronski, S. M. Jenser, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15, 2112–2115 (1976). [CrossRef]
  16. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382–390 (1993).
  17. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. A. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 324–327.
  18. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed optical fiber sensor using Brillouin scattering,” IEICE Jpn. J74-c-II, 467–476 (1991).
  19. J. Dhliwayo, D. J. Webb, “Temperature error analysis for a distributed temperature sensor based on stimulated Brillouin scattering,” in Proceedings of OFS’97 (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 554–557.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited