OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 31 — Nov. 1, 1999
  • pp: 6661–6672

Optical and thermal characterization of albumin protein solders

Karen M. McNally, Brian S. Sorg, Naresh C. Bhavaraju, Mathieu G. Ducros, Ashley J. Welch, and Judith M. Dawes  »View Author Affiliations

Applied Optics, Vol. 38, Issue 31, pp. 6661-6672 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of temperature on the optical and thermal properties of pure and indocyanine green-doped albumin protein solders as a function of wavelength has been studied between 25 °C and 100 °C. An increase in the group refractive index by up to 4% and a decrease in absorption coefficient (∼800 nm) by up to 8%, after denaturing the solder specimens in a constant-temperature water bath at temperatures of 60–100 °C, were not significant. The reduced scattering coefficient, however, increased rapidly with temperature as the solder changed from being a highly nonscattering medium at room temperature to a highly scattering medium at temperatures close to 70 °C. The thermal conductivity, thermal diffusivity, and heat capacity increased by up to 30%, 15%, and 10%, respectively. Finally, the frequency factor and activation energy were measured to be 3.17 × 1056 s-1 and 3.79 × 105 J mol-1, respectively, for liquid protein solders (25% bovine serum albumin) and 3.50 × 1057 s-1 and 3.85 × 105 J mol-1, respectively, for solid protein solders (60% bovine serum albumin). Incorporation of dynamic optical and thermal properties into modeling studies of laser tissue interactions could have a significant influence on the determination of the expected zone of damage.

© 1999 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.2020) Lasers and laser optics : Diode lasers
(160.4760) Materials : Optical properties
(170.6940) Medical optics and biotechnology : Tissue welding
(300.6190) Spectroscopy : Spectrometers

Original Manuscript: March 29, 1999
Revised Manuscript: July 19, 1999
Published: November 1, 1999

Karen M. McNally, Brian S. Sorg, Naresh C. Bhavaraju, Mathieu G. Ducros, Ashley J. Welch, and Judith M. Dawes, "Optical and thermal characterization of albumin protein solders," Appl. Opt. 38, 6661-6672 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. S. Bass, S. K. Libutti, M. C. Oz, J. Rosen, M. R. Williams, R. Nowygrod, M. R. Treat, “Canine choledochotomy closure with diode laser-activated fibrinogen solder,” Surgery (St. Louis) 115, 398–401 (1994). [PubMed]
  2. A. J. Kirsch, M. I. Miller, T. W. Hensle, D. T. Chang, R. Shabsigh, C. A. Olsson, J. P. Connor, “Laser tissue soldering in urinary tract reconstruction: first human experience,” J. Urol. 46(5), 261–266 (1995). [CrossRef]
  3. E. Chan, “Laser tissue welding: effects of solder coagulation and tissue optical properties,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1997).
  4. K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part I: Tensile strength and scanning electron microscopy analsysis,” Lasers Surg. Med. 24, 319–331 (1999). [CrossRef]
  5. K. M. McNally, B. S. Sorg, E. K. Chan, A. J. Welch, J. M. Dawes, E. R. Owen, “Optimal parameters for laser tissue soldering. Part II: Premixed versus separate dye/solder methods,” Lasers Surg. Med. (in press).
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumen, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  7. M. J. C. van Gemert, A. J. Welch, “Tissue constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989). [CrossRef]
  8. Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991). [CrossRef] [PubMed]
  9. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds., (Plenum, New York, 1995), pp. 131–206. [CrossRef]
  10. S. A. Prahl, “Light distribution in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Texas, 1988).
  11. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program LATIS,” in Medical Applications of Lasers III, F. Laffitte, R. Hibst, H.-D. Reidenback, H. J. Geschwind, P. Spinelli, M.-A. D’Hallewin, J. A. Carrath, G. Maira, G. Godlewski, eds., Proc. SPIE2623, 349–358 (1995). [CrossRef]
  12. J. W. Valvano, J. R. Cochran, E. R. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Thermophys. 6, 301–311 (1985). [CrossRef]
  13. D. Y. Yuan, J. W. Valvano, G. T. Anderson, “Measurement of thermal conductivity, thermal diffusivity, and perfusion,” Biomed. Sci. Instrum. 29, 435–442 (1993). [PubMed]
  14. Y. S. Touloukian, P. E. Liley, S. C. Saxena, Thermophysical Properties of Matter: The TPRC Data Series (Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.
  15. F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489 (1947).
  16. A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20, 1471–1481 (1984). [CrossRef]
  17. R. Agah, “Quantitative characterisation of arterial tissue damage,” M.S.E. thesis (University of Texas at Austin, Austin, Texas, 1988).
  18. S. L. Jacques, S. Rastegar, M. Motamedi, S. Thomsen, J. Schwartz, J. Torres, I. Mannonen, “Liver photocoagulation with diode laser (805 nm) versus Nd:YAG laser (1064 nm),” in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 107–117 (1992). [CrossRef]
  19. R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996). [CrossRef] [PubMed]
  20. S. Thomsen, “Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991). [PubMed]
  21. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  22. S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987). [CrossRef] [PubMed]
  23. R. Agah, J. A. Pearce, A. J. Welch, M. Motamedi, “Rate process model for arterial tissue thermal damage: implications on vessel photocoagulation,” Lasers Surg. Med. 15, 176–184 (1994). [CrossRef] [PubMed]
  24. M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Biol. 16, 113–126 (1992). [CrossRef]
  25. Z. F. Gourgouliatos, “Behaviour of optical properties of tissue as a function of temperature,” M.S. thesis (University of Texas at Austin, Austin, Texas, 1986).
  26. I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993). [CrossRef] [PubMed]
  27. R. Agah, M. Motamedi, D. Praveen, E. Ettedgui, L. Song, J. R. Spears, “Potential role of collagen in optical behaviour of arterial tissue during laser irradiation,” in Laser-Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 246–252 (1990). [CrossRef]
  28. D. C. Clark, L. J. Smith, D. R. Wilson, “A spectroscopic study of the conformational properties of foamed bovine serum albumin,” J. Colloid Interface Sci. 121, 136–137 (1981). [CrossRef]
  29. J. Gallier, P. Rivet, J. de Certaines, “1H- and 2H-NMR study of bovine serum albumin solutions,” Biochim. Biophys. Acta 915, 1–18 (1987). [CrossRef] [PubMed]
  30. G. Pico, “Thermodynamic aspects of the thermal stability of human serum albumin,” Biochem. Mol. Biol. Int. 36, 1017–1023 (1995). [PubMed]
  31. G. Yoon, P. S. Sriram, R. C. Straight, A. J. Welch, “Thermal response during tissue coagulation by successive laser exposures,” Am. Soc. Laser Med. Surg. 3, 4 (1991).
  32. M. L. J. Landsman, G. Kwant, G. A. Mook, W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976). [PubMed]
  33. Becton Dickinson and Company product information sheet 0260031, Becton Dickinson Microbiology Systems, 250 Schilling Circle, Cockeysville, Md. 21030.
  34. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990). [CrossRef]
  35. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989). [CrossRef] [PubMed]
  36. S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo diffusion modelling of light distributions in tissue,” in Laser Interaction with Tissue, M. W. Berns, ed., Proc. SPIE908, 20–28 (1988). [CrossRef]
  37. M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989). [CrossRef] [PubMed]
  38. X. Wang, T. E. Milner, M. C. Change, J. S. Nelson, “Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,” J. Biomed. Opt. 1, 212–216 (1996). [CrossRef] [PubMed]
  39. M. S. Si, T. E. Milner, B. Anvari, J. S. Nelson, “Dynamic heat capacity changes of laser-irradiated type I collagen films,” Lasers Surg. Med. 19, 17–22 (1996). [CrossRef] [PubMed]
  40. G. S. Anderson, A. D. Martin, “Calculated thermal conductivities and heat flux in man,” Undersea Hyperbar Med. 21(4), 431–441 (1994).
  41. T. Menovsky, J. F. Beek, M. J. C. van Gemert, “CO2 laser nerve welding: optimal laser parameters and the use of solders in vitro,” Microsurgery 15, 44–51 (1994). [CrossRef]
  42. T. Asshauer, G. P. Delacretaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996). [CrossRef]
  43. J. C. Chato, “Selected thermophysical properties of biological materials,” in Heat Transfer in Medicine and Biology: Analysis and Applications, A. Shitzer, R. C. Eberhart, eds. (Plenum, New York, 1985), Vol. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited