OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 32 — Nov. 10, 1999
  • pp: 6700–6704

Temporal Talbot effect in fiber gratings and its applications

José Azaña and Miguel A. Muriel  »View Author Affiliations


Applied Optics, Vol. 38, Issue 32, pp. 6700-6704 (1999)
http://dx.doi.org/10.1364/AO.38.006700


View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a temporal effect equivalent to the spatial Talbot effect (self-imaging) applies to the reflection of periodic pulse trains from linearly chirped fiber gratings (LCFG’s). For specific input repetition periods the reflected signal is an exact replica of the input signal. Input repetition period values that give rise to this effect depend on the dispersion coefficient of the grating. We propose to use this effect as an alternative for dispersion measurement in LCFG’s. Furthermore, by using the properties of the temporal Talbot effect, we can design linear passive devices (LCFG’s) for use as frequency multipliers, able to multiply the repetition rate of a given pulse train.

© 1999 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(260.2030) Physical optics : Dispersion

History
Original Manuscript: June 16, 1999
Published: November 10, 1999

Citation
José Azaña and Miguel A. Muriel, "Temporal Talbot effect in fiber gratings and its applications," Appl. Opt. 38, 6700-6704 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-32-6700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Papoulis, “Pulse compression, fiber communications, and diffraction: a unified approach,” J. Opt. Soc. Am. A 11, 3–13 (1994). [CrossRef]
  2. B. H. Kolner, “Space–time duality and the theory of temporal imaging,” IEEE J. Quantum. Electron. 30, 1951–1963 (1994). [CrossRef]
  3. T. Jannson, J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  4. B. E. A. Saleh, M. I. Irshid, “Collet–Wolf equivalence theorem and propagation of a pulse in a single-mode optical fiber,” Opt. Lett. 7, 342–343 (1982). [CrossRef] [PubMed]
  5. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8, 232–234 (1983). [CrossRef] [PubMed]
  6. B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989). [CrossRef] [PubMed]
  7. B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens: erratum,” Opt. Lett. 15, 655 (1990). [CrossRef]
  8. M. T. Kauffman, A. A. Godil, B. A. Auld, W. C. Banyai, D. M. Bloom, “Applications of time lens optical systems,” Electron. Lett. 29, 268–269 (1993). [CrossRef]
  9. C. V. Bennet, R. P. Scott, B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65, 2513–2515 (1994). [CrossRef]
  10. A. W. Lohmann, D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31, 6212–6219 (1992). [CrossRef] [PubMed]
  11. M. A. Muriel, J. Azaña, A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999). [CrossRef]
  12. J. T. Winthrop, C. R. Worthington, “Theory of Fresnel images. I. plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–381 (1965). [CrossRef]
  13. M. Mansuripur, “The Talbot effect,” Opt. Photon. News 8(4), 42–47 (1997).
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  15. F. Mitschke, U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998). [CrossRef]
  16. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  17. M. A. Muriel, A. Carballar, J. Azaña, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35, 548–558 (1999). [CrossRef]
  18. K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998). [CrossRef]
  19. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, New York, 1962).
  20. S. Barcelos, M. N. Zervas, R. I. Laming, D. N. Payne, L. Reekie, J. A. Tucknott, R. Kashyap, P. F. McKee, F. Sladen, B. Wojciechowicz, “High accuracy dispersion measurements of chirped fibre gratings,” Electron. Lett. 31, 1280–1282 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited