OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6808–6817

Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the southern subtropics

Jean-Luc Baray, Jean Leveau, Jacques Porteneuve, Gérard Ancellet, Philippe Keckhut, Françoise Posny, and Serge Baldy  »View Author Affiliations


Applied Optics, Vol. 38, Issue 33, pp. 6808-6817 (1999)
http://dx.doi.org/10.1364/AO.38.006808


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rayleigh–Mie lidar measurements of stratospheric temperature and aerosol profiles have been carried out at Reunion Island (southern tropics) since 1993. Since June 1998, an operational extension of the system is permitting additional measurements of tropospheric ozone to be made by differential absorption lidar. The emission wavelengths (289 and 316 nm) are obtained by stimulated Raman shifting of the fourth harmonic of a Nd:YAG laser in a high-pressure deuterium cell. A mosaic of four parabolic mirrors collects the backscattered signal, and the transmission is processed by the multiple fiber collector method. The altitude range of ozone profiles obtained with this system is 3–17 km. Technical details of this lidar system working in the southern tropics, comparisons of ozone lidar profiles with radiosondes, and scientific perspectives are presented. The significant lack of tropospheric ozone measurements in the tropical and equatorial regions, the particular scientific interest in these regions, and the altitude range of the ozone measurements to 16–17 km make this lidar supplement useful and its adaptation technically conceivable at many Rayleigh–Mie lidar stations.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

History
Original Manuscript: March 1, 1999
Revised Manuscript: August 2, 1999
Published: November 20, 1999

Citation
Jean-Luc Baray, Jean Leveau, Jacques Porteneuve, Gérard Ancellet, Philippe Keckhut, Françoise Posny, and Serge Baldy, "Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the southern subtropics," Appl. Opt. 38, 6808-6817 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-33-6808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. World Meteorological Organization, “Scientific assessment on ozone depletion,” (World Health Organization, Geneva, 1994).
  2. S. Baldy, G. Ancellet, M. Bessafi, A. Badr, D. Lan Sun Luk, “Field observation of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics),” J. Geophys. Res. 96, 23,835–23,849 (1996). [CrossRef]
  3. I. Folkins, R. Chatfield, H. Singh, Y. Chen, B. Heikes, “Ozone production efficiencies of acetone and peroxides in the upper troposphere,” Geophys. Res. Lett. 25, 1305–1308 (1998). [CrossRef]
  4. H. Gouget, J. P. Cammas, A. Marenco, R. Rosset, I. Jonquières, “Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: a case study from the airborne campaign TROPOZ II over the Caribbean in winter,” J. Geophys. Res. 101, 25,979–25,993 (1996). [CrossRef]
  5. J. L. Baray, G. Ancellet, F. G. Taupin, M. Bessafi, S. Baldy, P. Keckhut, “Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere,” J. Atmos. Terr. Phys. 60, 27–36 (1998). [CrossRef]
  6. J. P. Cammas, S. Jacobi-Koaly, K. Suhre, R. Rosset, A. Marenco, “Atlantic subtropical potential vorticity barrier as seen by Measurements of Ozone by Airbus In Service Aircraft (MOZAIC) flights,” J. Geophys. Res. 103, 25,681–25,693 (1998). [CrossRef]
  7. K. Suhre, J. P. Cammas, P. Nédelec, R. Rosset, A. Marenco, H. G. J. Smit, “Ozone-rich transients in the upper equatorial Atlantic troposphere,” Nature 388, 661–663 (1997). [CrossRef]
  8. J. L. Baray, G. Ancellet, T. Randriambelo, S. Baldy, “Tropical Marlene cyclone and stratosphere–troposphere exchange,” J. Geophys. Res. 104, 13,953–13,970 (1999). [CrossRef]
  9. M. J. Kurylo, S. Solomon, “Network for the detection of stratospheric change: a status and implementation report,” (NASA, Washington, D.C., 1990).
  10. H. Bencherif, J. Leveau, J. Porteneuve, P. Keckhut, A. Hauchecorne, G. Mégie, F. Fassina, M. Bessafi, “Lidar development and observations over Reunion Island (20.8 °S, 55.5 °E),” in Proceedings of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (Springer-Verlag, Berlin, 1996), pp. 553–556.
  11. J. A. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,535–25,585 (1994).
  12. G. Ancellet, M. Beekmann, “Evidence for changes in the ozone concentrations in the free troposphere over southern France from 1976 to 1995,” Atmos. Environ. 31, 2835–2851 (1997). [CrossRef]
  13. J. Pelon, G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982). [CrossRef]
  14. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential absorption lidar measurements of tropospheric ozone with an excimer–Raman hybrid laser,” Opt. Lett. 8, 347–349 (1983). [CrossRef] [PubMed]
  15. G. Ancellet, A. Papayannis, J. Pelon, G. Mégie, “DIAL tropospheric measurement, using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989). [CrossRef]
  16. L. Stefanutti, F. Castagnoli, M. Del Guasta, M. Morandi, V. M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve, “The Antarctic ozone LIDAR system,” Appl. Phys. B 55, 3–12 (1992). [CrossRef]
  17. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994). [CrossRef]
  18. J. A. Sunesson, A. Apituley, D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994). [CrossRef] [PubMed]
  19. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996). [CrossRef]
  20. Z. Wang, J. Zhou, H. Hu, Z. Gong, “Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements,” Appl. Phys. B. 62, 143–147 (1996). [CrossRef]
  21. M. H. Proffitt, A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997). [CrossRef] [PubMed]
  22. L. Fiorani, B. Calpini, L. Jaquet, H. Van Den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the medcaphot-trace campaign,” Atmos. Environ. 32, 2151–2159 (1998). [CrossRef]
  23. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long term surveillance of the middle atmosphere by the French Rayleigh lidar,” J. Atmos. Ocean. Technol. 10, 850–867 (1993). [CrossRef]
  24. K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994). [CrossRef]
  25. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  26. A. Papayannis, G. Ancellet, J. Pelon, G. Mégie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990). [CrossRef] [PubMed]
  27. G. Ancellet, F. Ravetta, “Compact airborne lidar for tropospheric ozone: description and field measurements,” Appl. Opt. 37, 5509–5521 (1998). [CrossRef]
  28. L. T. Molina, M. J. Molina, “Absolute Absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  29. S. L. Valley, Handbook of Geophysics and Space Environments, Atmospheric Optics (McGraw-Hill, New York, 1965), Chap. 7, pp. 1–36.
  30. D. B. Rensch, R. K. Long, “Comparative studies of extinction and backscattering by aerosols, fog, and rain at 10.6 and 0.63 µm,” Appl. Opt. 9, 1563–1573 (1970). [CrossRef] [PubMed]
  31. D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990). [CrossRef]
  32. L. De Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. Van den Bergh, “Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997). [CrossRef] [PubMed]
  33. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978). [CrossRef] [PubMed]
  34. H. S. Lee, G. Schwemmer, C. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990). [CrossRef] [PubMed]
  35. R. M. Measure, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  36. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  37. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  38. E. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  39. V. A. Kovalev, J. L. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994). [CrossRef] [PubMed]
  40. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-section of ozone: measurements, results and error analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass., 1984), p. 606.
  41. A. M. Bass, A. E. Ledford, A. H. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976). [CrossRef]
  42. S. L. Manatt, A. L. Lane, “A compilation of the absorption cross section of SO2 from 106 to 403 nm,” J. Quant. Spectrosc. Radiat. Transfer 50, 267–276 (1993). [CrossRef]
  43. D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for non-linear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993). [CrossRef] [PubMed]
  44. J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmosphere research in the Arctic,” Opt. Eng. 36, 2045–2061 (1997). [CrossRef]
  45. L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Dirieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997). [CrossRef]
  46. R. A. Barnes, A. R. Bandy, A. L. Torres, “Electrochemical concentration cell ozonesonde accuracy and precision,” J. Geophys. Res. 90, 7881–7888 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited