OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6904–6911

Kilohertz pulse repetition frequency slab Ti:sapphire lasers with high average power (10 W)

William J. Wadsworth, David W. Coutts, and Colin E. Webb  »View Author Affiliations


Applied Optics, Vol. 38, Issue 33, pp. 6904-6911 (1999)
http://dx.doi.org/10.1364/AO.38.006904


View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL’s configured for maximum output power (of order 100 W) but with poor beam quality (M2 ∼ 300). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM00-mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction (>15 W TEM00, >23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.

© 1999 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(140.3600) Lasers and laser optics : Lasers, tunable
(140.6810) Lasers and laser optics : Thermal effects

History
Original Manuscript: April 14, 1999
Revised Manuscript: August 26, 1999
Published: November 20, 1999

Citation
William J. Wadsworth, David W. Coutts, and Colin E. Webb, "Kilohertz pulse repetition frequency slab Ti:sapphire lasers with high average power (10 W)," Appl. Opt. 38, 6904-6911 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-33-6904


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Erbert, I. Bass, R. Hackel, S. Jenkins, K. Kanz, J. Paisner, “43-W, cw Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 390–392.
  2. P. A. Schultz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991). [CrossRef]
  3. V. I. Donin, V. A. Ivanov, V. I. Kovalevskii, D. V. Yakovin, “CW generation from Ti:sapphire pumped with a high-power Ar+-laser,” Opt. Commun. 122, 40–42 (1995). [CrossRef]
  4. D. W. Coutts, W. J. Wadsworth, C. E. Webb, “High average power blue generation from a copper vapour laser pumped titanium sapphire laser,” J. Mod. Opt. 45, 1185–1197 (1998). [CrossRef]
  5. S. G. Bartoshevich, V. V. Zuev, S. Y. Mirza, P. N. Nazarenko, Y. P. Polunin, G. A. Skripto, V. B. Sukhanov, “Wide-band conversion of copper laser radiation in an Al2O3:Ti3+ crystal,” Sov. J. Quantum Electron. 19, 138–141 (1989). [CrossRef]
  6. M. R. H. Knowles, C. E. Webb, “Efficient high-power copper-vapor-laser-pumped Ti:Al2O3 laser,” Opt. Lett. 18, 607–609 (1993). [CrossRef]
  7. D. S. Knowles, D. J. W. Brown, “Compact 24-kHz copper-laser-pumped Ti:sapphire laser,” Opt. Lett. 20, 569–571 (1995). [CrossRef] [PubMed]
  8. B. E. Warner, “Status of copper vapor laser technology at Lawrence Livermore National Laboratory,” in Conference on Lasers Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 516–518.
  9. W. J. Wadsworth, D. W. Coutts, C. E. Webb, “Damage free power scaling of copper vapour laser pumped Ti:sapphire lasers,” in Advanced Solid State Lasers, Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 104–108.
  10. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–132 (1986). [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996). [CrossRef]
  12. C. Korner, R. Mayerhofer, M. Hartmann, H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys. A. 63, 123–131 (1996). [CrossRef]
  13. J. Richards, A. McInnes, “Versatile, efficient, diode-pumped miniature slab laser,” Opt. Lett. 20, 371–373 (1995). [CrossRef] [PubMed]
  14. H. Liu, Y. Yang, G. Zhang, Y.-K. Kuo, M.-F. Huang, M. Birnbaum, “Novel folded-cavity design for a Ti:Al2O3 laser,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 207–208.
  15. C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988). [CrossRef]
  16. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991). [CrossRef] [PubMed]
  17. J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited