OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6927–6941

Autonomous beam alignment for coherent Doppler lidar with multielement detectors

Rod Frehlich  »View Author Affiliations


Applied Optics, Vol. 38, Issue 33, pp. 6927-6941 (1999)
http://dx.doi.org/10.1364/AO.38.006927


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Autonomous beam alignment for coherent Doppler lidar requires accurate information about optical misalignment and optical aberrations. A multielement heterodyne detector provides the required information without a loss in overall system performance. The effects of statistical variations from the random backscattered field (speckle field) are determined with computer simulations for both ground-based operation with a fixed calibration target and for space-based operation with random target backscatter.

© 1999 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: April 30, 1999
Revised Manuscript: July 30, 1999
Published: November 20, 1999

Citation
Rod Frehlich, "Autonomous beam alignment for coherent Doppler lidar with multielement detectors," Appl. Opt. 38, 6927-6941 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-33-6927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  2. R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993). [CrossRef]
  3. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986). [CrossRef]
  4. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989). [CrossRef]
  5. R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994). [CrossRef]
  6. R. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997). [CrossRef] [PubMed]
  7. G. Constant, R. Foord, P. A. Forrester, J. M. Vaughan, “Coherent laser radar and the problem of aircraft wake vortices,” J. Mod. Opt. 41, 2153–2173 (1994). [CrossRef]
  8. T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
  9. S. M. Hannon, J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994). [CrossRef]
  10. S. M. Hannon, S. W. Henderson, “Wind measurement applications of coherent lidar,” Rev. Laser Eng. 23, 124–130 (1995). [CrossRef]
  11. S. M. Hannon, T. L. Clark, “Lidar measurement of windshear and turbulence and comparison with a predictive fine-mesh mesoscale model,” in Air Traffic Control Technologies II, R. G. Otto, J. Lenz, R. Targ, eds., Proc. SPIE2737, 151–161 (1996). [CrossRef]
  12. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, D. Moerder, “Coherent launch-site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993). [CrossRef] [PubMed]
  13. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1-µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  14. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  15. M. R. Huffaker, T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, R. J. Keeler, “Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance,” Appl. Opt. 23, 2523–2536 (1984). [CrossRef] [PubMed]
  16. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  17. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  18. T. R. Lawrence, D. J. Wilson, C. E. Craven, I. P. Jones, R. M. Huffaker, J. A. L. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972). [CrossRef]
  19. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986). [CrossRef] [PubMed]
  20. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  21. G. N. Pearson, B. J. Rye, “Frequency fidelity of a compact CO2 Doppler lidar transmitter,” Appl. Opt. 31, 6475–6484 (1992). [CrossRef] [PubMed]
  22. J. C. Petheram, G. Frohbeiter, A. Rosenberg, “Carbon dioxide Doppler lidar wind sensor on a space station polar platform,” Appl. Opt. 28, 834–839 (1989). [CrossRef] [PubMed]
  23. M. J. Kavaya, G. D. Emmitt, “The Space Readiness Coherent Lidar Experiment (SPAR-CLE) Space Shuttle Mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998). [CrossRef]
  24. M. J. Post, W. D. Neff, “Doppler lidar wind measurements in a narrow valley,” Bull. Am. Meteorl. Soc. 67, 274–281 (1985). [CrossRef]
  25. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  26. R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne windshear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1991). [CrossRef] [PubMed]
  27. J. M. Vaughan, K. O. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996). [CrossRef]
  28. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  29. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981). [CrossRef] [PubMed]
  30. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  31. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  32. J. H. Shapiro, “Precise comparison of experimental and theoretical SNR’s in CO2 laser heterodyne systems: comments,” Appl. Opt. 24, 1245 (1985). [CrossRef] [PubMed]
  33. R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993). [CrossRef] [PubMed]
  34. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979). [CrossRef] [PubMed]
  35. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982). [CrossRef] [PubMed]
  36. J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988). [CrossRef] [PubMed]
  37. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990). [CrossRef] [PubMed]
  38. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2: Applications,” Appl. Opt. 29, 4120–4132 (1990). [CrossRef] [PubMed]
  39. D. M. Tratt, R. T. Menzies, “Unstable resonator antenna properties in coherent lidar applications: a comparative study,” Appl. Opt. 27, 3645–3649 (1988). [CrossRef] [PubMed]
  40. D. M. Tratt, “Optimizing coherent lidar performance with graded-reflectance laser resonator optics,” Appl. Opt. 31, 4233–4239 (1992). [CrossRef] [PubMed]
  41. B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992). [CrossRef] [PubMed]
  42. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994). [CrossRef] [PubMed]
  43. W. Pichler, W. R. Leeb, “Target-plane intensity approximation for apertured Gaussian beams applied to heterodyne backscatter lidar systems,” Appl. Opt. 33, 4761–4770 (1994). [CrossRef] [PubMed]
  44. W. R. Leeb, P. J. Winzer, K. H. Kudielka, “Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers,” Appl. Opt. 37, 3143–3148 (1998). [CrossRef]
  45. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996). [CrossRef]
  46. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993). [CrossRef]
  47. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993). [CrossRef]
  48. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 1217–1230 (1994). [CrossRef]
  49. D. Fink, S. N. Vodopia, “Coherent detection SNR of an array of detectors,” Appl. Opt. 15, 453–454 (1976). [CrossRef] [PubMed]
  50. J. H. Shapiro, “Heterodyne mixing efficiency for detector arrays,” Appl. Opt. 26, 3600–3606 (1987). [CrossRef] [PubMed]
  51. N. Sugimoto, K. P. Chan, D. Killinger, “Optimal heterodyne detector array size for 1-µm coherent lidar propagation through atmospheric turbulence,” Appl. Opt. 30, 2609–2616 (1991). [CrossRef] [PubMed]
  52. K. P. Chan, D. K. Killinger, “Enhanced detection of atmospheric-turbulence-distorted 1-µm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219–1221 (1991). [CrossRef] [PubMed]
  53. K. P. Chan, D. K. Killinger, “Coherent 1-µm lidar measurements of atmospheric-turbulence-induced spatial decorrelation using a multielement heterodyne detector array,” Appl. Opt. 31, 1505–1510 (1992). [CrossRef] [PubMed]
  54. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 25, 5999–6009 (1996). [CrossRef]
  55. J. C. Dainty, Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, (Springer-Verlag, New York, 1975). [CrossRef]
  56. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  57. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1984).
  58. G. E. Johnson, “Constructions of particular random processes,” Proc. IEEE 82, 270–285 (1994). [CrossRef]
  59. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited