OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6942–6950

Shock-tube study of high-pressure H2O spectroscopy

Venu Nagali, John T. Herbon, David C. Horning, David F. Davidson, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 38, Issue 33, pp. 6942-6950 (1999)
http://dx.doi.org/10.1364/AO.38.006942


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Water-vapor absorption features near 7117, 7185, and 7462 cm-1 were probed at pressures to 65 atm (1 atm = 760 Torr) and temperatures to 1800 K in shock-heated mixtures of H2O in N2 and Ar with a diode-laser source. Calculated absorbances based on Voigt line shapes and measured line parameters were in good agreement, within 10%, with measured absorbances at 7185.4 and 7117.4 cm-1. We obtained temperature-dependent N2 and Ar shift parameters for H2O absorption features by shifting the calculated spectra to match the recorded absorption scan. Absorbance simulations based on line parameters from HITRAN and HITEMP were found to be similar over the range of temperatures 600–1800 K and were within 25% of the measurements. The combined use of Toth’s [Appl. Opt. 36, 4851 (1994)] line positions and strengths and HITRAN broadening parameters resulted in calculated absorption coefficients that were within 15% of the measurements at all three probed wavelengths.

© 1999 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(130.6010) Integrated optics : Sensors
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: March 19, 1999
Revised Manuscript: July 15, 1999
Published: November 20, 1999

Citation
Venu Nagali, John T. Herbon, David C. Horning, David F. Davidson, and Ronald K. Hanson, "Shock-tube study of high-pressure H2O spectroscopy," Appl. Opt. 38, 6942-6950 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-33-6942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef] [PubMed]
  2. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994). [CrossRef] [PubMed]
  3. M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994). [CrossRef] [PubMed]
  4. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994). [CrossRef]
  5. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996). [CrossRef]
  6. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palomobo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef] [PubMed]
  7. V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).
  8. V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997). [CrossRef]
  9. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  10. N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994). [CrossRef]
  11. L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  12. B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998). [CrossRef]
  13. R. A. Toth, “Extensive measurements of H216O frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]
  14. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2 and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989). [CrossRef] [PubMed]
  15. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986). [CrossRef]
  16. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987). [CrossRef]
  17. S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994). [CrossRef]
  18. S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994). [CrossRef]
  19. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997). [CrossRef]
  20. E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.
  21. R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).
  22. D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996). [CrossRef]
  23. E. L. Petersen, “A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).
  24. V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  25. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989). [CrossRef]
  26. B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  27. L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Mass. 01731 (personal communication, July1998).
  28. R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited