OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6951–6961

Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements

Thomas A. Reichardt, William C. Giancola, Christopher M. Shappert, and Robert P. Lucht  »View Author Affiliations


Applied Optics, Vol. 38, Issue 33, pp. 6951-6961 (1999)
http://dx.doi.org/10.1364/AO.38.006951


View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Degenerate four-wave mixing (DFWM) line shapes and signal intensities are measured experimentally in well-characterized hydrogen–air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) beam intensities in the phase-conjugate geometry. Resonances in the A2Σ+X2Π (0,0) band of OH are probed with multiaxial-mode laser radiation. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The DFWM signal intensities are used to measure OH number densities in a series of near-adiabatic flames at equivalence ratios ranging from 0.5 to 1.5. Use of saturating pump intensities minimizes the effects of beam absorption, providing more-accurate number density measurements. The saturated DFWM results are in excellent agreement with OH absorption measurements and equilibrium calculations of OH number density. The polarization dependence of the P1(2) and R2(1) resonances is investigated in both laser intensity regimes. There is a significant change in relative reflectivities for different polarization configurations when saturated.

© 1999 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2570) Spectroscopy : Four-wave mixing
(300.6420) Spectroscopy : Spectroscopy, nonlinear

History
Original Manuscript: April 9, 1999
Revised Manuscript: August 11, 1999
Published: November 20, 1999

Citation
Thomas A. Reichardt, William C. Giancola, Christopher M. Shappert, and Robert P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-33-6951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  3. P. H. Vaccaro, “Degenerate four-wave mixing (DFWM) spectroscopy,” in Nonlinear Spectroscopy for Molecular Structure Determination, E. Hirota, R. W. Field, J. P. Maier, S. Tsuchiya, eds. (Blackwell Scientific Publications Ltd., London, 1997).
  4. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, San Diego, Calif., 1983), pp. 211–284. [CrossRef]
  5. S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. I. Weak-field limit,” J. Chem. Phys. 101, 1072–1092 (1994). [CrossRef]
  6. S. Williams, R. N. Zare, L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994). [CrossRef]
  7. P. Ljungberg, O. Axner, “Two-step degenerate four-wave mixing as a means to decrease pre- and post-filtering effects in optically thick media,” Appl. Phys. B 59, 53–60 (1994). [CrossRef]
  8. B. Ai, R. J. Knize, “Degenerate four-wave mixing in two-level saturable absorbers,” J. Opt. Soc. Am. B 13, 2408–2419 (1996). [CrossRef]
  9. A. P. Smith, A. G. Astill, “Temperature measurement using degenerate four-wave mixing with non-saturating laser powers,” Appl. Phys. B 58, 459–466 (1994). [CrossRef]
  10. G. C. Herring, W. L. Roberts, M. S. Brown, P. A. DeBarber, “Temperature measurement by degenerate four-wave mixing with strong absorption of the excitation beams,” Appl. Opt. 35, 6544–6547 (1996). [CrossRef] [PubMed]
  11. G. M. Lloyd, I. G. Hughes, R. Bratfalean, P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B 67, 107–113 (1998). [CrossRef]
  12. P. M. Danehy, P. H. Paul, R. L. Farrow, “Thermal grating contributions to degenerate four-wave mixing in nitric oxide,” J. Opt. Soc. Am. B 12, 1564–1576 (1995). [CrossRef]
  13. P. M. Danehy, R. L. Farrow, “Comparison of degenerate four-wave mixing line shapes from population- and thermal-grating scattering,” J. Opt. Soc. Am. B 13, 1412–1418 (1996). [CrossRef]
  14. B. A. Mann, R. F. White, R. J. S. Morrison, “Detection and imaging of nitrogen dioxide with degenerate four-wave mixing and laser-induced fluorescence techniques,” Appl. Opt. 35, 475–481 (1996). [CrossRef] [PubMed]
  15. A. Dreizler, T. Dreier, J. Wolfrum, “Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection,” Chem. Phys. Lett. 233, 525–532 (1995). [CrossRef]
  16. A. P. Smith, G. Hall, B. J. Whitaker, A. G. Astill, D. W. Neyer, P. A. Delve, “Effects of inert gases on the degenerate four-wave-mixing spectrum of NO2,” Appl. Phys. B 60, 11–18 (1995). [CrossRef]
  17. H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G. M. Lloyd, P. Ewart, “Thermal grating and broadband degenerate four-wave mixing spectroscopy of OH in high-pressure flames,” Appl. Phys. B 67, 667–673 (1998). [CrossRef]
  18. D. A. Feikema, E. Domingues, M.-J. Cottereau, “OH rotational temperature and number density measurements in high-pressure flames using double phase-conjugate four-wave mixing,” Appl. Phys. B 55, 424–429 (1992). [CrossRef]
  19. M. Winter, P. P. Radi, “Nearly degenerate four-wave mixing using phase-conjugate pump beams,” Opt. Lett. 17, 320–322 (1992). [CrossRef] [PubMed]
  20. M. Winter, P. P. Radi, A. Stampanoni, “Double phase-conjugate four-wave mixing of OH in flames,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1645–1652. [CrossRef]
  21. R. Bratfalean, P. Ewart, “Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields,” Phys. Rev. A 56, 2267–2279 (1997). [CrossRef]
  22. P. Ewart, P. G. R. Smith, R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36, 5959–5968 (1997). [CrossRef] [PubMed]
  23. R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1653–1659. [CrossRef]
  24. R. P. Lucht, R. L. Farrow, D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993). [CrossRef]
  25. R. L. Farrow, D. J. Rakestraw, T. Dreier, “Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment,” J. Opt. Soc. Am. B 9, 1770–1777 (1992). [CrossRef]
  26. P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993). [CrossRef]
  27. G. N. Robertson, K. Kohse-Höinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with Σ-Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996). [CrossRef]
  28. B. Attal-Trétout, H. Bervas, J. P. Taran, S. Le Boiteux, P. Kelley, T. K. Gustafson, “Saturated FDFWM lineshapes and intensities: theory and application to quantitative measurements in flames,” J. Phys. B 30, 497–522 (1997). [CrossRef]
  29. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993). [CrossRef] [PubMed]
  30. S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992). [CrossRef]
  31. T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 72–74 (1990). [CrossRef] [PubMed]
  32. T. Dreier, D. J. Rakestraw, “Degenerate four-wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B. 50, 479–485 (1990). [CrossRef]
  33. B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992). [CrossRef] [PubMed]
  34. D. J. Rakestraw, L. R. Thorne, T. Dreier, “Detection of NH radicals in flames using degenerate four-wave mixing,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1901–1907.
  35. G. J. Germann, R. L. Farrow, D. J. Rakestraw, “Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2,” J. Opt. Soc. Am. B 12, 25–32 (1995). [CrossRef]
  36. V. Sick, M. N. Bui-Pham, R. L. Farrow, “Detection of methyl radicals in a flat flame by degenerate four-wave mixing,” Opt. Lett. 20, 2036–2038 (1995). [CrossRef] [PubMed]
  37. H. Bervas, B. Attal-Trétout, L. Labrunie, S. Le Boiteux, “Four-wave mixing in OH: comparison between CARS and DFWM,” Nuovo Cimento 14, 1043–1050 (1992). [CrossRef]
  38. H. Bervas, B. Attal-Trétout, S. Le Boiteux, J. P. Taran, “OH detection and spectroscopy by DFWM in flames: comparison with CARS,” J. Phys. B 25, 949–969 (1992). [CrossRef]
  39. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  40. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1988). [CrossRef]
  41. R. L. Abrams, R. C. Lind, “Degenerate four-wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978); erratum, 3, 205 (1978).
  42. T. A. Reichardt, R. P. Lucht, “Interaction of closely spaced resonances in degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 14, 2449–2458 (1997). [CrossRef]
  43. T. A. Reichardt, R. P. Lucht, P. M. Danehy, R. L. Farrow, “Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 15, 2566–2572 (1998). [CrossRef]
  44. M. S. Brown, L. A. Rahn, R. P. Lucht, “Degenerate four-wave mixing line shapes of hydroxyl at high pump intensities,” Appl. Opt. 34, 3274–3280 (1995). [CrossRef] [PubMed]
  45. T. A. Reichardt, R. P. Lucht, “Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy,” J. Opt. Soc. Am. B 13, 1107–1119 (1996). [CrossRef]
  46. D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, G. Alber, “Degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 42, 3018–3026 (1990). [CrossRef] [PubMed]
  47. Y. Tang, S. A. Reid, “Saturation behavior in degenerate four-wave mixing with nonmonochromatic, non-Lorentzian fields,” J. Chem. Phys. 105, 8481–8489 (1996). [CrossRef]
  48. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program,” (SRI International, 333 Ravenswood Ave., Menlo Park, Calif., 1996).
  49. S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations,” (NASA Lewis Research Center, Cleveland, Ohio, 1976).
  50. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+–X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1987). [CrossRef]
  51. E. C. Rea, A. Y. Chang, R. K. Hanson, “Collisional broadening of the A2Σ+ ← X2Π (0,0) band of OH by H2O and CO2 in atmospheric-pressure flames,” J. Quant. Spectrosc. Radiat. Transfer 41, 29–42 (1989). [CrossRef]
  52. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977). [CrossRef]
  53. J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational transfer rates in the υ′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991). [CrossRef]
  54. P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994). [CrossRef]
  55. N. L. Garland, D. R. Crosley, “On the collisional quenching of electronically excited OH, NH and CH in flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1693–1702.
  56. T. A. Reichardt, R. P. Lucht, “Resonant degenerate four-wave mixing spectroscopy of transitions with degenerate energy levels: saturation and polarization effects,” J. Chem. Phys. (to be published).
  57. C. F. Kaminski, I. G. Hughes, P. Ewart, “Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame,” J. Chem. Phys. 106, 5324–5332 (1997). [CrossRef]
  58. S. Williams, L. A. Rahn, R. N. Zare, “Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing,” J. Chem. Phys. 104, 3947–3955 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited