Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements

Not Accessible

Your library or personal account may give you access

Abstract

Degenerate four-wave mixing (DFWM) line shapes and signal intensities are measured experimentally in well-characterized hydrogen–air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) beam intensities in the phase-conjugate geometry. Resonances in the A 2Σ+X 2Π (0,0) band of OH are probed with multiaxial-mode laser radiation. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The DFWM signal intensities are used to measure OH number densities in a series of near-adiabatic flames at equivalence ratios ranging from 0.5 to 1.5. Use of saturating pump intensities minimizes the effects of beam absorption, providing more-accurate number density measurements. The saturated DFWM results are in excellent agreement with OH absorption measurements and equilibrium calculations of OH number density. The polarization dependence of the P 1(2) and R 2(1) resonances is investigated in both laser intensity regimes. There is a significant change in relative reflectivities for different polarization configurations when saturated.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental investigation of saturated polarization spectroscopy for quantitative concentration measurements

Thomas A. Reichardt, William C. Giancola, and Robert P. Lucht
Appl. Opt. 39(12) 2002-2008 (2000)

Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy

Thomas A. Reichardt and Robert P. Lucht
J. Opt. Soc. Am. B 13(6) 1107-1119 (1996)

Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations

Robert P. Lucht, Roger L. Farrow, and David J. Rakestraw
J. Opt. Soc. Am. B 10(9) 1508-1520 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved