OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 33 — Nov. 20, 1999
  • pp: 6962–6966

High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm

Gianluca Galzerano, Cesare Svelto, Elio Bava, and Fabrizio Bertinetto  »View Author Affiliations

Applied Optics, Vol. 38, Issue 33, pp. 6962-6966 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (96 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The FM spectroscopy technique has been applied to two frequency-doubled Nd:YAG lasers to achieve absolute frequency stabilization against the hyperfine structure components of the rovibronic P(54) 32–0 iodine line at 532 nm. A fractional frequency stability of 2 × 10-13 τ-1/2 has been obtained for integration times in the range of 1 ms < τ < 10 s. For longer integration times the stability level remains below 10-13, reaching a minimum value of 4.6 × 10-14 at 100 s. This high stability level is, to our knowledge, the best value achieved against iodine lines by this locking method and for a fully transportable system.

© 1999 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Original Manuscript: May 17, 1999
Revised Manuscript: August 11, 1999
Published: November 20, 1999

Gianluca Galzerano, Cesare Svelto, Elio Bava, and Fabrizio Bertinetto, "High-frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm," Appl. Opt. 38, 6962-6966 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985). [CrossRef] [PubMed]
  2. T. J. Kane, E. A. Cheng, “Fast frequency tuning and phase locking of diode-pumped Nd:YAG ring lasers,” Opt. Lett. 13, 970–972 (1988). [CrossRef] [PubMed]
  3. M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995). [CrossRef]
  4. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993). [CrossRef]
  5. L. G. Kazovsky, “Performance analysis and laser linewidth requirements for optical PKS heterodyne communications systems,” J. Lightwave Technol. 4, 415–425 (1986). [CrossRef]
  6. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  7. T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992). [CrossRef]
  8. A. J. Wallard, “The frequency stabilization of gas lasers,” J. Phys. E 6, 793–803 (1973). [CrossRef]
  9. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  10. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy-theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  11. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982). [CrossRef] [PubMed]
  12. J. L. Hall, L. S. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999). [CrossRef]
  13. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991). [CrossRef] [PubMed]
  14. G. Galzerano, E. Bava, M. Bisi, F. Bertinetto, C. Svelto, “Frequency stabilization of frequency-doubled Nd:YAG laser at 532 nm by frequency modulation spectroscopy technique,” IEEE Trans. Instrum. Meas. 48, 540–543 (1999). [CrossRef]
  15. A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980). [CrossRef]
  16. J. Ye, L. Robertsson, S. Picard, J. L. Hall, “Absolute frequency atlas of 9 molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited