OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 34 — Dec. 1, 1999
  • pp: 7112–7127

Vacuum Temperature-Dependent Ellipsometric Studies on WO3 Thin Films

Zahid Hussain  »View Author Affiliations


Applied Optics, Vol. 38, Issue 34, pp. 7112-7127 (1999)
http://dx.doi.org/10.1364/AO.38.007112


View Full Text Article

Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vacuum temperature-dependent ellipsometric studies on WO3 thin films are reported at a single wavelength, λ = 0.633 μm, and across a temperature range of 100 < T ≤ 453 K. All the measurements were made in an optical cryostat fixed in the sample compartment of the ellipsometer. Experimental results involving reduction and oxidation of WO3 are discussed in terms of electrochromic characteristics and structural changes, which can be helpful for many and various technological applications. Temperature-dependent drifts in the real part of the refractive index n and extinction coefficient k have been explained by use of a variety of chemical relations and have also been utilized to evaluate their temperature coefficients. Moreover, polaronic excitations between localized states around the Fermi level are put forward to explain the ellipsometric results at or above room temperature, and both polaronic and bipolaronic transitions are proposed for interpreting low-temperature ellipsometric measurements.

© 1999 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.2100) Materials : Electro-optical materials
(230.0250) Optical devices : Optoelectronics
(240.0310) Optics at surfaces : Thin films
(260.2130) Physical optics : Ellipsometry and polarimetry
(310.6860) Thin films : Thin films, optical properties

Citation
Zahid Hussain, "Vacuum Temperature-Dependent Ellipsometric Studies on WO3 Thin Films," Appl. Opt. 38, 7112-7127 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-34-7112


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. M. Ramans, J. V. Gabrusenoks, A. R. Lusis, and A. A. Patmalnieks, “Structure of amorphous thin films of WO3 and MoO3,” J. Non-Cryst. Solids 90, 637–640 (1987).
  2. A. Hjelm, C. G. Granqvist, and J. M. Wills, “Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3,” Phys. Rev. B 54, 2436–2445 (1996).
  3. L. A. Bursill, “Structure of small defects in nonstoichiometric WO3−x,” J. Solid State Chem. 48, 256–271 (1983); M. Kawaminami and T. Hirose, “Condensed phonon modes in successive phases of WO3,” J. Phys. Soc. Jpn. 46, 864–870 (1979); M. Kawaminami and T. Hirose, “Condensed modes in the triclinic WO3,” J. Phys. Soc. Jpn. 47, 1733 (1979).
  4. E. Salje and K. Viswanathan, “Physical properties and phase transitions in WO3,” Acta Crystallogr. A 31, 356–359 (1975).
  5. D. Green, “Optical constants of sputtered WO3,” Appl. Opt. 29, 4547–4549 (1990).
  6. M. Green and Z. Hussain, “Optical properties of dilute hydrogen tungsten bronze thin films,” J. Appl. Phys. 69, 7788–7796 (1991).
  7. A. Travlos, “Physical properties of thin films of sodium tungsten bronzes,” Ph.D. dissertation (University of London, London, 1984).
  8. S. K. Deb, “Optical and photoelectric properties and color centers in thin films of tungsten oxide,” Philos. Mag. 27, 801–821 (1973).
  9. C. G. Granqvist, “Energy-efficient windows: options with present and forthcoming technology,” in Electricity: Efficient End-Use and New Generation Technologies, and Their Planning Implications, T. B. Johansson, B. Bodlund, and R. H. Williams, eds. (Lund University Press, Sweden, 1989), pp. 89–123.
  10. A. M. Andersson, C. G. Granqvist, and J. R. Stevens, “Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window,” Appl. Opt. 28, 3295–3308 (1989).
  11. M. Green and K. Kang, “Electrochromic displays,” Disp. Technol. Appl. 9, 166–173 (1988).
  12. C. Julien, “Technological applications of solid state ionics,” Mater. Sci. Eng. B 6, 9–28 (1990).
  13. T. Nishimura, Y. Inoue, K. Sugahara, S. Kusunoki, T. Kumamoto, S. Nakagawa, M. Nakaya, Y. Horiba, and Y. Akasaka, “Three-dimensional IC for high performance image signal processor,” IEEE IEDM Tech. Digest, 111–112 (1987).
  14. S. K. Deb, “Opportunities and challenges of electrochromic phenomena in transition metal oxides,” Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).
  15. K. Matsuhiro and Y. Masuda, “Transmissive electrochromic display using a porous crystalline WO3 counter electrode,” Proc. Soc. Inf. Disp. 21/22, 101–105 (1980).
  16. M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices (Academic, San Diego, Calif., 1989).
  17. M. Di. Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide,” J. Phys. D 30, 3211–3215 (1997).
  18. N. Koshida and O. Tomita, “Ion-beam modification of amorphous WO3 film and its properties as a high-contrast inorganic ion resist,” Jpn. J. Appl. Phys. 24, 92–94 (1985); also see N. Koshida and O. Tomita, “Mechanism of a high-contrast inorganic ion resist using amorphous WO3,” Jpn. J. Appl. Phys. 25, 1932–1935 (1986).
  19. M. Hashimoto, S. Watanuki, N. Koshida, M. Komuro, and N. Atoda, “Dual function of thin MoO3 and WO3 films as negative and positive resists for focused ion beam lithography,” Jpn. J. Appl. Phys. 35, 3665–3669 (1996).
  20. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1988); see also H. Berning, “Theory and calculations of optical thin films,” in Physics of Thin Films, G. Haas, ed. (Academic, New York, 1963), Vol. 1, p. 63.
  21. D. J. De Smet, “Ellipsometry of anisotropic substrates: reexamination of a special case,” J. Appl. Phys. 76, 2571–2575 (1994).
  22. G. E. Jellison, Jr., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
  23. R. H. Muller, ed., Advances in Electrochemistry and Electrochemical Engineering (Wiley-Interscience, New York, 1973), Vol. 9, p. 167.
  24. F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact Drude equations in reflection problems,” in Ellipsometry in the Measurement of Surfaces and Thin Films, Symposium Proceedings, Washington, D.C., 1963, E. Passaglia, R. R. Stromberg, and J. Kruger, eds., Natl. Bur. Stand. Misc. Publ. 256 (U.S. Government Printing Office, Washington, D.C., 1964), pp. 61–82.
  25. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977), p. 186.
  26. F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).
  27. M. Green and Z. Hussain, “Optical properties of lithium tungsten bronze thin films,” J. Appl. Phys. 74, 3451–3458 (1993).
  28. M. Green and A. Travlos, “Sodium tungsten bronze thin films: optical properties of dilute bronzes,” Philos. Mag. B 51, 501–520 (1985).
  29. M. Green and K. Kang, “Variation in the chemical potential of sodium in NaxWO3 films,” Thin Solid Films 62, 385–387 (1979).
  30. M. Shiojiri, T. Miyano, and C. Kaito, “Structure and crystallization of very thin amorphous WO3 films,” Jpn. J. Appl. Phys. 17, 567–568 (1978).
  31. S. A. Agnihotry, K. K. Saini, T. K. Saxena, and S. Chandra, “Electrical properties and morphology of obliquely deposited electrochromic WO3 films,” Thin Solid Films 141, 183–192 (1986).
  32. P. Gerard and A. Deneuville, “Color in tungsten trioxide thin films,” J. Appl. Phys. 48, 4252–4255 (1977).
  33. T. Kamimori, J. Nagai, and M. Mizuhashi, “Electrochromic devices for transmissive and reflective light control,” Sol. Energy Mater. 16, 27–38 (1987).
  34. J. Nagai, T. Kamimori, and M. Mizuhashi, “Electrochromism in amorphous lithium tungsten oxide films,” Sol. Energy Mater. 13, 279–295 (1986).
  35. J. Nagai and T. Kamimori, “Kinetic study of LixWOx electrochromism,” Jpn. J. Appl. Phys. 22, 681–687 (1983).
  36. F. L. McCrackin, “A Fortran program for analysis of ellipsometer measurements,” Natl. Bur. Stand. (U.S.) Tech. Note 479 (U.S. Government Printing Office, Washington, D.C., 1969).
  37. Q. Zhong, J. R. Dahn, and K. Colbow, “Lithium intercalation into WO3 and the phase diagram of LixWO3,” Phys. Rev. B 46, 2554–2560 (1992).
  38. G. Hagg and A. Magneli, “Recent structure investigations of oxygen compounds of molybdenum and tungsten,” Rev. Pure Appl. Chem. 4, 235–249 (1954).
  39. R. G. Evans, L. A. Bursill, and D. J. Smith, “Electron optical study of tungsten trioxide,” Optik. 72, 137–142 (1986).
  40. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozowa, and E. Hanamura, Excitonic Processes in Solids (Springer-Verlag, Berlin, 1986).
  41. Q. Zhong, J. R. Dahn, and K. Colbow, “Lithium intercalation into WO3 and the phase diagram of LixWO3,” Phys. Rev. B 46, 2554–2560 (1992).
  42. B. Domenges, N. K. McGuire, and M. O’Keeffe, “Bond lengths and valences in tungsten oxides,” J. Solid State Chem. 56, 94–100 (1985).
  43. J. Booth, T. Ekstrom, E. Iguchi, and R. J. D. Tilley, “Notes on phases occurring in the binary tungsten–oxygen system,” J. Solid State Chem. 41, 293–307 (1982).
  44. J. J. Kleperis, P. D. Cikmach, and A. R. Lusis, “Colour centers in amorphous tungsten trioxide thin films,” Phys. Status Solidi A 83, 291–297 (1984).
  45. J. V. Gabrusenoks, P. D. Cikmach, A. R. Lusis, J. J. Kleperis, and G. M. Ramans, “Electrochromic color centers in amorphous tungsten trioxide thin films,” Solid State Ionics 14, 25–30 (1984).
  46. Y. Shigesato, A. Murayama, T. Kamimori, and K. Matsuhiro, “Characterization of evaporated amorphous WO3 films by Raman and FTIR spectroscopies,” Appl. Surf. Sci. 33/34, 804–811 (1988).
  47. H. R. Zeller and H. U. Beyeler, “Electrochromism and local order in amorphous WO3,” Appl. Phys. 13, 231–237 (1977).
  48. M. Ahsan Habib and S. P. Maheswari, “In situ infrared spectroscopic study of the electrochromic reactions of tungsten trioxide films,” J. Electrochem. Soc. 138, 2029–2031 (1991).
  49. Y. Shigesato, Y. Hayashi, A. Masui, and T. Haranou, “The structural changes of indium-tin oxide and a-WO3 films by introducing water to the deposition processes,” Jpn. J. Appl. Phys. 30, 814–819 (1991).
  50. M. Shiojiri, T. Miyano, and C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
  51. A. Agrawal and H. Habibi, “Effect of heat treatment on the structure, composition and electrochromic properties of evaporated tungsten oxide films,” Thin Solid Films 169, 257–270 (1989).
  52. K. Bange and T. Gambke, “Electrochromic materials for optical switching devices,” Adv. Mater. 2, 10–16 (1990).
  53. H. Demiryont and S. C. Schulz, “Stoichiometry considerations on optical and electrochromic properties of sputtered tungsten oxide films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VIII, C. Granqvist and C. M. Lampert, eds., Proc. SPIE 1149, 28–39 (1989).
  54. M. Rubin, K. Von Rottkay, S.-J. Wen, N. Ozer, and J. Slack, “Optical indices of lithiated electrochromic oxides,” Sol. Energy Mater. Sol. Cells 54, 49–57 (1998).
  55. C. Bohnke and O. Bohnke, “Heat treatment of amorphous electrochromic WO3 thin films deposited onto indium–tin oxide substrates,” J. Appl. Electrochem. 18, 715–723 (1988).
  56. D. Davazoglou and A. Donnadieu, “Structure and optical properties of WO3 thin films prepared by chemical vapor deposition,” Thin Solid Films 147, 131–142 (1987).
  57. H. Kaneko, K. Miyake, and Y. Teramoto, “Preparation and properties of reactively sputtered tungsten oxide films,” J. Appl. Phys. 53, 3070–3075 (1982).
  58. K. Marszalek, E. Leja, and T. Stapinski, “Direct current sputtered electrochromic coatings,” Sol. Energy Mater. 16, 47–53 (1987).
  59. R. B. Goldner, D. H. Mendelsohn, J. Alexander, W. R. Henderson, D. Fitzpatrick, T. E. Haas, and H. H. Sample, “High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films,” Appl. Phys. Lett. 43, 1093–1095 (1983).
  60. S. Sawada and G. C. Danielson, “Domain structure of WO3 single crystals,” Phys. Rev. 113, 1005–1013 (1959).
  61. J. F. Owen, K. J. Teegarden, and H. R. Shanks, “Optical properties of the sodium-tungsten bronzes and tungsten trioxide,” Phys. Rev. B 18, 3827–3837 (1978).
  62. A. Nakamura and S. Yamada, “Fundamental absorption edge of evaporated amorphous WO3 films,” Appl. Phys. 24, 55–59 (1981).
  63. G. Hoppmann and E. Salje, “Absorption spectra and optical gap energies of WxMo1−xO3,” Opt. Commun. 30, 199–202 (1979).
  64. E. Salje, “A new type of electro-optic effect in semiconducting WO3,” J. Appl. Crystallogr. 7, 615–617 (1974).
  65. E. Salje, “The electrochromic effect in polar WO3,” Opt. Commun. 24, 231–232 (1977).
  66. Ji-Guang Zhang, D. K. Benson, C. E. Tracy, S. K. Deb, A. W. Czanderna, and C. Bechinger, “Chromic mechanism in amorphous WO3 films,” J. Electrochem. Soc. 144, 2022–2025 (1997).
  67. S. Tanisaki, “On the phase transition of tungsten trioxide below room temperature,” J. Phys. Soc. Jpn. 15, 566–581 (1960).
  68. T. Hirose, “Structural phase transitions and semiconductor–metal transition in WO3,” J. Phys. Soc. Jpn. 49, 562–567 (1980).
  69. M. Ladouceur, J. P. Bodelet, L. Parent, and S. Dallaire, “Plasma spraying of WO3: structural characterization of the coatings,” Thin Solid Films 166, 249–254 (1988).
  70. K. Machida and M. Enyo, “Structural and electrochromic properties of tungsten and molybdenum trioxide electrodes in acidic media,” J. Electrochem. Soc. 137, 1169–1175 (1990).
  71. B. W. Faughnan, R. S. Crandall, and P. M. Heyman, “Electrochromism in WO3 amorphous films,” RCA Rev. 36, 177–200 (1975).
  72. M. Sharon, M. K. Sharan, and S. R. Jawalekar, “Preparation and characterization of oxygen deficient WO3 film,” Sol. Energy Mater. 10, 329–334 (1984).
  73. M. Baba, K. Ohta, and T. Ikeda, “Preparation of metallic W film by H2 reduction of WO3 electron-resist film,” Jpn. J. Appl. Phys. 30, 2581–2584 (1991).
  74. H. Morita and H. Washida, “Electrochromism of atmospheric evaporated tungsten oxide films,” Jpn. J. Appl. Phys. 23, 754–759 (1984).
  75. M. Shojiri, T. Miyano, and C. Kaito, “Electron microscopic studies of structure and crystallization of amorphous metal oxide films,” Jpn. J. Appl. Phys. 18, 1937–1945 (1979).
  76. H. Hochst and R. D. Bringans, “Electronic structure of evaporated and annealed tungsten oxide films studied with UPS,” Appl. Surf. Sci. 11/12, 768–773 (1982).
  77. T. Nanba and I. Yasui, “X-ray diffraction study of microstructure of amorphous tungsten trioxide films prepared by electron beam vacuum evaporation,” J. Solid State Chem. 83, 304–315 (1989).
  78. C. Ottermann, A. Temmink, and K. Bange, “Correlation of injected charge to optical constants (n, k) of electrochromic films,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, C. Granqvist and C. M. Lampert, eds., Proc. SPIE 1272, 111–121 (1990).
  79. V. S. Grunin, V. L. Makarov, I. B. Patrina, and M. V. Razumeenko, “EPR of electron and hole centers in WO3 single crystals,” Sov. Phys. Solid State 30, 1421–1424 (1988).
  80. R. Gehlig and E. Salje, “Dielectric properties and polaronic conductivity of WO3 and WxMo1−xO3,” Philos. Mag. B 47, 229–245 (1983).
  81. G. Hollinger and P. Pertosa, “Direct observation of the Anderson transition in HxWO3 bronzes by high-resolution x-ray photoelectron spectroscopy,” Chem. Phys. Lett. 74, 341–344 (1980).
  82. T. Yoshimura, “Oscillator strength of small-polaron absorption in WOx (x ≤ 3) electrochromic thin films,” J. Appl. Phys. 57, 911–919 (1985).
  83. E. Salje and G. Hoppmann, “Small-polaron absorption in WxMo1−xO3,” Philos. Mag. B 43, 105–114 (1981).
  84. E. Iguchi and H. Miyagi, “A study on the stability of polarons in monoclinic WO3,” J. Phys. Chem. Solids 54, 403–409 (1993).
  85. O. F. Schirmer and E. Salje, “The W5+ polaron in crystalline low temperature WO3 ESR and optical absorption,” Solid State Commun. 33, 333–336 (1980).
  86. K. Furukawa and T. Hirose, “Anomalous thermal hysteresis of dielectric constant of tungsten trioxide WO3,” J. Phys. Soc. Jpn. 55, 4137–4138 (1986).
  87. O. F. Schirmer and E. Salje, “Conduction bipolarons in low-temperature crystalline WO3−x,” J. Phys. C 13, L1067–L1072 (1980); see also O. F. Schirmer, V. Wittwer, G. Baur, and G. Brandt, “Dependence of WO3 electrochromic absorption on crystallinity,” J. Electrochem. Soc. 124, 749–753 (1977).
  88. E. Iguchi and K. Akashi, “Dielectric relaxations and electrical transport due to nonadiabatic small polarons in p-type NiO doped with Li,” J. Phys. Soc. Jpn. 61, 3385–3393 (1992); also see E. Iguchi, E. Salje, and R. J. D. Tilley, “Polaron interaction energies in reduced tungsten trioxide,” J. Solid State Chem. 38, 342–359 (1981).
  89. S. K. Deb, “Electron spin resonance of defects in single crystal and thin films of tungsten trioxide,” Phys. Rev. B 16, 1020–1024 (1977).
  90. R. Gazzinelli and O. F. Schirmer, “Light induced W5+ ESR in WO3,” J. Phys. C 10, L145–L148 (1977).
  91. W. A. Kamitakahara, K. Scharnberg, and H. R. Shanks, “Special phonons and superconductivity in the hexagonal tungsten bronzes,” Phys. Rev. Lett. 43, 1607–1611 (1979).
  92. K. L. Ngai and R. Silberglitt, “Effect of lattice instability on superconductivity in sodium tungsten bronze,” Phys. Rev. B 13, 1032–1039 (1976).
  93. A. S. Alexandrov, A. M. Bratkovsky, N. F. Mott, and E. K. H. Salje, “Near-infrared absorption of YBa2Cu3O7−δ: evidence for Bose–Einstein condensation of small bipolarons,” Phys. C 215, 359–370 (1993).
  94. A. S. Alexandrov and D. K. Ray, “Theory of high-Tc superconductors: back to small bipolarons,” Philos. Mag. Lett. 63, 295–302 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited