OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 34 — Dec. 1, 1999
  • pp: 7145–7150

Frequency doubling of ultrashort laser pulses in biological tissues

Beop-Min Kim, Jürgen Eichler, and Luiz B. Da Silva  »View Author Affiliations

Applied Optics, Vol. 38, Issue 34, pp. 7145-7150 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical and experimental studies of second-harmonic generation (SHG) in biological tissues was performed by use of ultrashort laser pulses (<1 ps). A simplified one-dimensional model for the generation and the propagation of frequency-doubled light inside tissue was developed. This model was tested in vitro against measurements of pig and chicken tissue and human tooth. The experimental results indicate that the intensity of SHG varies significantly among tissue types and between test sites in individual tissue. Possibilities of using this nonlinear tissue property in imaging and diagnostics are discussed.

© 1999 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.6930) Medical optics and biotechnology : Tissue
(190.4160) Nonlinear optics : Multiharmonic generation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Original Manuscript: April 16, 1999
Revised Manuscript: August 6, 1999
Published: December 1, 1999

Beop-Min Kim, Jürgen Eichler, and Luiz B. Da Silva, "Frequency doubling of ultrashort laser pulses in biological tissues," Appl. Opt. 38, 7145-7150 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Rentzepis, J. A. Giordmaine, K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16, 792–794 (1966). [CrossRef]
  2. A. P. Shkurinov, A. V. Dubrovskii, N. I. Koroteev, “Second-harmonic generation optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality,” Phys. Rev. Lett. 70, 1085–1088 (1992). [CrossRef]
  3. Z. Chen, M. Sheves, A. Lewis, O. Bouevitch, “A comparison of the second-harmonic generation from light-adapted, dark-adapted, blue and acid purple membrane,” Biophys. J. 67, 1155–1160 (1994). [CrossRef] [PubMed]
  4. D. Zeisel, N. Hampp, “Dynamic self-pumped phase-conjugating mirror based on the bacteriorhodopsin variant D96N,” Opt. Lett. 19, 1412–1414 (1994). [CrossRef] [PubMed]
  5. I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity: optical second-harminic microscopy, cross-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986). [CrossRef] [PubMed]
  6. G. B. Altshuler, N. R. Belashenkov, G. A. Martsinovski, A. A. Solounin, “Nonlinear transmission and second-harmonic generation in dentin in the field of ultrashort Nd-laser pulses,” in Advanced Laser Dentistry, G. B. Altshuler, R. J. Blankenau, H. A. Wigdor, eds., Proc. SPIE1984, 6–10 (1995). [CrossRef]
  7. V. Hovanessian, A. Lalayan, “Second-harmonic generation in biofiber-containing tissues,” in Proceedings of the International Conference on Lasers ’96 (Society for Optical and Quantum Electronics, McLean, Va., 1996), pp. 107–110.
  8. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997). [CrossRef]
  9. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995). [CrossRef] [PubMed]
  10. J. A. Squier, D. N. Fittinghoff, C. P. F. Barty, K. R. Wilson, M. Mueller, A. H. Buis, G. J. Brakenhoff, “Two-photon imaging with 15 fs pulses and third harmonic microscopy imaging techniques,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 33–34.
  11. M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998). [CrossRef] [PubMed]
  12. J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller, G. J. Brakenhoff, “Characterization of femtosecond pulses focused with high numerical aperture optics using interferometric surface-third-harmonic generation,” Opt. Commun. 147, 153–156 (1998). [CrossRef]
  13. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, R. R. Alfano, “Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses,” Appl. Opt. 35, 6810–6813 (1996). [CrossRef] [PubMed]
  14. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996). [CrossRef] [PubMed]
  15. M. H. Niemz, T. Hoppeler, T. Juhasz, J. F. Bille, “Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses,” Lasers Light Ophthalmol. 5, 145–152 (1993).
  16. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Select. Top. Quantum Electron. 2, 801–809 (1996). [CrossRef]
  17. B.-M. Kim, M. D. Feit, A. M. Rubenchik, B. M. Mammini, L. B. Da Silva, “Optical feedback signal for ultrashort laser pulse ablation of tissue,” Appl. Surf. Sci. 127-129, 857–862 (1998). [CrossRef]
  18. M. D. Feit, A. M. Rubenchik, B.-M. Kim, L. B. Da Silva, M. D. Perry, “Physical characterization of ultrashort laser pulse drilling of biological tissue,” Appl. Surf. Sci. 127-129, 869–874 (1998). [CrossRef]
  19. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef] [PubMed]
  20. D. T. Poh, “Examination of refractive index of human epidermis in-vitro and in-vivo,” in Proceedings of the International Conference on Lasers ’96 (Society for Optical and Quantum Electronics, McLean, Va., 1996), pp. 118–125.
  21. D. J. Maitland, “Dynamic measurements of tissue birefringence: theory and experiments,” Ph.D. dissertation (Northwestern University, Evanston, Ill., 1995).
  22. A. Yariv, Quantum Electronics (Wiley, New York, 1988), pp. 378–406.
  23. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton, Fla., 1997), pp. 10–264.
  24. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited